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What is Graph Coloring?

Suppose G is a graph. Let k be a positive integer. Denote
[k] := {1, 2, . . . , k}.

Definition
k-coloring: A map φ : V (G)→ [k] such that if u↔ v in G then
φ(u) 6= φ(v).

Definition
Chromatic number of G: The minimum k such that there is a
k-coloring of G.

The Chromatic number is denoted by χ(G).
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Example: The Petersen Graph

Figure: The Petersen Graph
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Example: The Petersen Graph

Figure: Petersen Graph with a 3-coloring.

χ(Petersen) = 3.
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Example: The Petersen Graph

Figure: Petersen Graph with a 3-coloring. χ(Petersen) = 3.
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Simplest cases: Graphs with χ(G) = 1 and χ(G) = 2

I If χ(G) = 1 then G has no edges.

I If χ(G) = 2 then G is non-trivial bipartite.

I Bad news: No ‘nice’ characterization for graphs of chromatic
number k for any k ≥ 3.
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Why no nice characterization?
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An upper bound from local considerations

Suppose V (G) = {v1, v2, . . . , vn}. Consider coloring the vertices
one at a time...

greedily...

I Proposition

χ(G) ≤ ∆ + 1, where ∆ = max
v∈V

d(v).

I Theorem
(Brooks): If G 6= C2n+1,Kn and is connected then χ(G) ≤ ∆.
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Lower bounds

I If H ⊂ G then χ(G) ≥ χ(H). In particular, χ(G) ≥ ω(G)
where ω(G) is the size of a maximum clique in G.

I χ(G) ≥ n
α(G) , where α(G) = Size of a maximum independent

set in G.
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Question: Does there exist a graph G with no triangles (no K3 as
a subgraph) and with chromatic number, say 1000?

Figure: The Mycielski construction for χ(G) = 1, 2, 3, 4.
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Graphs with no small cycles and large chromatic number

Theorem
(Blanche Descartés akaTutte) There exists graphs with girth 6 and
chromatic number k for any k ≥ 2.

Theorem
(Erdős) For any given k, g there exists a graph G with girth greater
than g and χ(G) ≥ k.
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Sketch of proof of Erdős’ result

I Pick G randomly, i.e., pick each edge independently, and with
probability p.

I If N = number of cycles of size less than or equal to g, then

E(N) =

g∑
i=3

n(n− 1) · · · (n− i+ 1)

2i
pi <

gngθ

6
if we have

p = nθ−1 (for some 0 < θ < 1).

I In particular, if θ < 1/g we have E(N) = o(n), so
P(N > n/2) < 0.1, say.
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Sketch of proof of Erdős’ result (contd.)

I

P(α(G) ≥ x) ≤
(
n

x

)
(1− p)(

x
2) <

(
ne−(p(x−1)/2

)x
< 0.1,

say, if x = Cn1−θ log n for a suitable constant C.

I Delete from each small cycle an edge to destroy all cycles of
size at most g (deleting at most n/2 vertices). The resulting
graph G∗ has α(G∗) < Cn1−θ log n and has no cycles of size
less than or equal to g. Furthermore,
χ(G) ≥ χ(G∗) ≥ n/2

Cn1−θ logn
. �
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Lovász gave a (complicated) constructive proof.

Nešeťril and Rödl gave a simpler constructive proof.

No known ‘purely graph-theoretic’ constructions.

The Erdős result actually proves that almost all graphs are very
‘close’ to such graphs!
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χ(G) and local considerations

Question: If we knew the chromatic number of every ‘large’
subgraph of G, then can we deduce something about χ(G)? Can
χ(G) still be much larger?

YES, IT CAN BE MUCH, MUCH LARGER!

Theorem
(Erdős) Given any k ≥ 3 there exists ε = ε(k) > 0 and n0 = n0(ε)
such that the following holds: For every n ≥ n0 there exists a
graph G on n vertices satisfying

1. For every subset H of at most εn vertices χ(H) ≤ 3.

2. χ(G) ≥ k(!).

I Proof uses a probabilistic construction.

I Almost every graph (in the random graph model) can be
altered mildly to obtain such a G.
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(Erdős) Given any k ≥ 3 there exists ε = ε(k) > 0 and n0 = n0(ε)
such that the following holds: For every n ≥ n0 there exists a
graph G on n vertices satisfying

1. For every subset H of at most εn vertices χ(H) ≤ 3.

2. χ(G) ≥ k(!).

I Proof uses a probabilistic construction.

I Almost every graph (in the random graph model) can be
altered mildly to obtain such a G.

Niranjan Balachandran Introduction to Graph and Geometric Algorithms



Any improvements on Brooks’ theorem?

Characterizing graphs for which χ(G) ≤ ∆− 1 is difficult.

Theorem
(Maffray, Preissmann) Determining if a 4-regular graph has
chromatic number 3 is NP-complete.
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Any improvements on Brooks’ theorem?

Theorem
(Molly,Reed) For ∆� 0 and ω(G) ≤ ∆− 1 we have
χ(G) ≤ ∆− 1.

Theorem
(J.H. Kim) If G has girth at least 5, then χ(G) ≤ ∆

log ∆ (1 + o(1))
for ∆� 0.

Theorem
(Johansson) If G is triangle free, then χ(G) ≤ O

(
∆

log ∆

)
.

All these proofs heavily rely on probabilistic techniques.
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Proof of Kim: An Iterative coloring process

I Pick a small subset of uncolored vertices (i.e. pick each

uncolored vertex with probability O(1)
log ∆) and for each of these

chosen vertices, assign a color chosen uniformly at random
from the list of colors available for that vertex. Initially each
|Lv| = ∆

log ∆ (1 + ε) for each v.

I ‘Uncolor’ any vertex if one of its neighbors was also picked
and assigned the same color (this will hold for both of these
vertices). Remove that color from the list of colors that vertex
may be assigned in future (again, for both the vertices).
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Proof of Kim: An Iterative coloring process

I If a vertex v is assigned a color and retains it (after step 2),
remove this color from the assignable list of colors of any of
its remaining neighbors.

I With positive probability, this iteration can be carried about

O
(

log ∆
log log ∆

)
times ensuring that after each iteration |Lv|

roughly the same for each uncolored v, and the number of
uncolored neighbors of v which share some color c in the list
Lv is ‘much smaller’ |Lv|.

I The remaining final piece of the graph can be colored greedily.
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Some Open Problems

1. (Hadwiger’s conjecture) Let G be a class of graphs closed
under deletions of vertices/edges, and contractions of edges,
and removing any loops that might arise. Then the maximum
chromatic number of the graphs in G equals the number of
vertices in a largest clique that occurs in G.

2. (B. Reed) χ(G) ≤
⌈

∆+ω+1
2

⌉
, where ω = ω(G) is the size of a

maximum clique in G.

3. (Borodin, Kostochka) If ∆ ≥ 9 then χ(G) ≤ ∆− 1. The
Reed-Molloy result proves this asymptotically. Bounds in that
proof are too large.

4. Any better lower bounds on χ(G)?
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Any improvements on Brooks’ theorem?

9 is best possible in the Borodin-Kostochka conjecture:

V1

V2 V3

V4 V5
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List Colorings of Graphs

Let C be a set of colors, and for each v ∈ V (G), let Lv ⊂ C. Let
L := {Lv|v ∈ V }.

A List coloring φ for G is a proper coloring of G with the
constraint that φ(v) ∈ Lv for each v ∈ V .

Definition
The List Chromatic number of G (denoted χl(G)) :=mink G
has a list coloring for any collection L := {Lv|v ∈ V } provided
|Lv| ≥ k, irrespective of the actual lists themselves.

If all the lists are identical, then the minimum number k is the
definition above is simply χ(G).
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The list chromatic number of a graph can be larger than the
chromatic number.

{1, 2}

{2, 3}

{1, 3}

{1, 2}

{2, 3}

{1, 3}

Niranjan Balachandran Introduction to Graph and Geometric Algorithms



Results on List Colorings

Theorem
(Erdős, Rubin, Taylor): χl(Km,m) > k if m = Ω(k22k).

Erdős, Rubin, and Taylor characterized all the graphs of list
chromatic number 2.

Theorem
(Analogue of Brooks’ theorem): χl(G) ≤ ∆ if G 6= C2n+1,Kn.

Theorem
(Johansson,Kim): For ∆� 0, χl(G) ≤ O

(
∆

log ∆

)
if G is triangle

free (resp. girth at least 5).
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List Colorings for Bipartite graphs

Proposition

If G is bipartite then χl(G) ≤ dlog2 |V |e.

A crucial difference between χ(G) and χl(G): There exist graphs
with chromatic number 2 and with minimum degree k for any
given k.

Theorem
(Alon): If the minimum degree of G is d, then
χl(G) ≥ (1

2 − o(1)) log d.
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Some Open problems

1. (Alon) For any bipartite graph G χl(G) ≤ O(log ∆). The
same is known to hold for a random bipartite graph whp.

2. (Ohba) If |V (G)| ≤ 2χ(G) + 1 then χl(G) = χ(G). Erdős,
Rubin, taylor proved this for the graph Kn(2);
Molloy-Sudakov proved this asymptotically, i.e .if
|V (G)| ≤ (2− o(1))χ(G) then χl(G) = χ(G).

3. (folklore) What is the list chromatic number of the
n-dimensional cube for n > 3?

4. If G is a bipartite graph and M is a matching between the
two parts of G, χl(G ∪M) ≤ χl(G) + 1.
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