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approximation algorithms

trade o� accuracy for time.

for every instance we compute an α approximate solution in

polynomial time.

Example

Travelling salesperson: an approximation algorithm returns a tour

no more than twice the length of the shortest tour for every

instance.
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Types of approximation algorithms

Good news: there are problems in NP that admit FPTAS.

Bad news: there are problems in NP than do not admit any

approximation algorithm (unless..)

Inapproximability can be thought of as more re�ned study of class

NP-C.
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Vertex cover

IP : minimize ∑
v∈V

wvxv

xu + xv >= 1 ∀(u,v) ∈ E
xv ∈ {0,1} ∀v ∈ V

LP : minimize ∑
v∈V

wvxv

xu + xv >= 1 ∀(u,v) ∈ E
xv ≥ 0 ∀v ∈ V
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Matching

D− LP : minimize ∑
(u,v)∈e

yuv

∑
v∈n(u)

yuv ≤ wu for all u ∈ V

yuv ≥ 0 ∀v ∈ V

M : minimize ∑
(u,v)∈e

yuv

∑
v∈n(u)

yuv ≤ wu for all u ∈ V

yuv ∈ {0,1} ∀v ∈ V
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Set cover

IP : minimize ∑
s∈S

wsxs

∑
s:v∈s

xs >= 1 ∀v ∈ U

xs ∈ {0,1} ∀s ∈ S

LP : minimize ∑
v∈v

wsxs

∑
s:v∈s

xs >= 1 ∀v ∈ U

xs ≥ 0 ∀s ∈ S



Introduction Lower bounds Dual �tting Rounding Primal-dual Point cover

Set cover: dual

LP : maximize ∑
u∈V

yu

∑
v∈s

yv ≤ ws ∀s ∈ S

yv ≥ 0 ∀v ∈ V

ILP : maximize ∑
u∈V

yu

∑
v∈s

yv ≤ ws ∀s ∈ S

yv ∈ {0,1} ∀v ∈ V
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Shortest paths in digraphs

ip : minimize ∑
e∈e

wexe

∑
e∈n(v)

xe =


1 if v = s

−1 if v = t

0 otherwise

xe ∈ {0,1} ∀e ∈ E
vertex, edge incidence matrix. (u,e) is 1 is edge goes out from u,

−1 otherwise.

LP relaxation polytope is integral (integrality gap is 1).
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Constrained shortest paths

ip : minimize ∑
e∈e

wexe

∑
e∈n(v)

xe =


1 if v = s

−1 if v = t

0 otherwise

∑
e∈e

dexe ≤ d

xe ∈ {0,1}∀e ∈ e
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Constrained shortest paths

IP1 : min ∑
e∈e

wexe + λ(∑
e∈e

dexe − d)

∑
e∈n(v)

xe =

 1 if v = s

−1 if v = t

0 otherwise

∑
e∈e

dexe ≤ d

xe ∈ {0,1} ∀e ∈ e

Let x∗ be the optimal integral solution to the constrainted shortest

path problem. v(ip,x∗) ≥ v(IP1,x∗) for λ ≥ 0.
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Constrained shortest paths

IPL : min ∑
e∈e

wexe + λ(∑
e∈e

dexe − d)

∑
e∈n(v)

xe =


1 if v = s

−1 if v = t

0 otherwise

xe ∈ {0,1} ∀e ∈ e

Let x′ be the optimal integral solution to IPL.
v(IP1,x∗) ≥ v(IPL,x′) ∀λ ≥ 0.

Theorem

The value of optimal solution to IPL is a lower bound on the value of x∗.
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Lagrangian relaxation

IPL is the lagrangian relaxation.

we want the best possible lower bound, therefore �nd λ such
that optimal to IPL maximized.

largarangian can be solved using subgradient methods (note
that the function might not be di�erentiable).
or using column generation (dantzig-wolfe decomposition).
lagrangian bound is atleast as good as the linear programming
bound, for integral polytopes the two bounds coincide
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Greedy algorithm for set cover

r = {}

sol = {}

while r != u

s : min { w(s)/|s \ r| }

sol <- sol union s

r <- r union (s \ r)

for all e in (s \ r)

p(e) = w(s)/|s \ r|
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Analysis

Proof.

∑
e∈u

p(e) = w(sol)

consider a set s= (s1, . . . ,sk)

for all i,p(si) ≤
w(s)

k− i

∑
si∈s

p(si) ≤ w(s)h(k)

p(e)/h(n) is feasible in the dual

by weak duality the performance ratio is h(n).

s′is are ordered in the order they are covered by the greedy.
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Vertex cover

ip : minimize ∑
v∈v

wvxv

xu + xv >= 1 ∀(u,v) ∈ e

xv ∈ {0,1} ∀v ∈ v

lp : minimize ∑
v∈v

wvxv

xu + xv >= 1 ∀(u,v) ∈ e

xv ≥ 0 ∀v ∈ v

let x∗ be the optimal lp solution.

xv =

{
1 if x∗v >= 1

2

0 otherwise.
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Vertex cover

each constraint contains atleast one variable with value ≥ 1/2
in x∗.

rounding gives a feasible integral solution.

value of the integral solution is at most double the value of the

optimal lp solution.
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Half integrality of vertex cover

De�nition

A solution to an LP is an extreme point if it cannot be expressed as

a convex combination of two other feasible solutions.

Lemma

Every extreme point solution is half integral i.e., xv ∈ {0,1/2,1}.

Proof.

Vp = {v | x∗v > 1/2} Vn = {v | x∗v < 1/2}

av =

 x∗v + ε if v ∈ Vp

x∗v − ε if v ∈ Vn

x∗v otherwise.
bv =

 x∗v − ε if v ∈ Vp

x∗v + ε if v ∈ Vn

x∗v otherwise.
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Pricing method for vertex cover

De�nition

pe ≥ 0 is the price associated with each edge e.
wv is the cost associated with each vertex v.
price p is fair if for every vertex ∑e on v pe ≤ wv.

Theorem

A fair price is a lower bound on the cost of any vertex cover.

∑
e on v

pe ≤ wv

∑
v∈s

∑
e on v

pe ≤ w(s)
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Algorithm

De�nition

A vertex is saturated if ∑e on v pe = wv

an edge is uncovered if neither of its endpoints are in the cover.

price of e = 0

while there exists an

uncovered edge e

raise price on e

without violating

fairness

s = { v | v is saturated}
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Analysis

Theorem

Cost of vertex cover produced is at most twice the fair price.

Proof.

Every vertex in the cover is saturated.

∑
e on v

pe = wv

∑
v∈s

∑
e on v

pe = w(s)

2∑
e

pe ≥ w(s)
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Complementary slackness

P : min ∑n
i=1 cixi

n

∑
i=1

ajixi ≥ bj, j= 1..m

xi ≥ 0

D : max ∑m
j=1bjyj

m

∑
j=1

ajiyj ≤ ci, i= 1..n

yj ≥ 0
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Complementary slackness

Theorem

Let x,y be primal and dual feasible solutions. x,y are optimal if

and only if following conditions are satis�ed:

1 xi(∑m
j=1 ajiyj − ci) = 0 for all 1≤ i≤ n

2 yj(∑n
i=1 ajixi − bj) = 0 for all 1≤ j≤m.
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Relaxed complementary slackness

De�nition

Let x,y be primal and dual feasible solutions. x,y are said to satisfy

relaxed complementary slackness condition if:

1 xi > 0 =⇒ ci

α ≤ ∑m
j=1 ajiyj ≤ ci = 0 for all 1≤ i≤ n

2 yj > 0 =⇒ (bj ≤ ∑n
i=1 ajixi ≤ βbj) = 0 for all 1≤ j≤m.
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rcsc

Theorem

If x,y are feasible and satisfy rcsc then ∑n
i=1 cixi ≤ αβ ∑m

j=1bjyj.

Proof.

n

∑
i=1

cixi ≤ α
n

∑
i=1

(
m

∑
j=1

aijyj

)
xi

m

∑
j=1

(
n

∑
i=1

aijxi

)
yj ≤ β

m

∑
j=1

bjyj
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Pricing method for vertex cover revisited

α = 1, β = 2

xv > 0 =⇒ ∑e on v pe = wv

pe > 0 =⇒ xu + xv ≤ 2

primal conditions: pick only saturated vertices in the cover.

dual conditions: from every edge pick atmost two vertices in

the cover.

primal conditions satis�ed by pricing algorithm, dual conditions

satis�ed automatically
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Point Cover

all the horizontal lines (12) comprise the optimal solution, and the greedy

algorithm will pick all the vertical lines (22). the example can be

generalized.
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2D

The problem is equivalent to vertex cover in bipartite graphs in 2-D.

Theorem ( König�Egerváry)

The size of the minimum vertex cover is the same as the size of the

maximum matching in a bipartite graph.

2-D can be solved optimally.
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d dimensions

Let L be the set of all the axis parallel lines, associated with each

line l ∈ L is a binary variable yl whose value is 1 if the line is picked

in the solution, 0 otherwise. L(xi) is the set of axis parallel lines

through point xi.

IP: min∑
l∈L

yl (1)

∑
l : l∈L(xi)

yl ≥ 1 ∀ xi (2)

yl ∈ {0,1} (3)
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The linear programming relaxation LP to the integer program IP, is

obtained by replacing constraints of type (3) with non-negativity

constraints yl ≥ 0. The linear programming dual of LP is:

LP-dual: max
n

∑
i=1

zi (4)

∑
i : l∈L(xi)

zi ≤ 1 ∀ l ∈ L (5)

zi ≥ 0 (6)
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Primal-dual d approximation

while there exists an uncovered point, the algorithm picks all

the d axis parallel lines that go through the point.

set yl = 1 if the line is picked by the algorithm else yl = 0. let

xi be the uncovered point picked in iteration j, then set zi = 1.

solutions constructed above are feasible, and the value of the

primal solution is at most d times the value of the dual

solution, i.e. the performance ratio is d.
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