| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
|              |              |              |          |             |             |
|              |              |              |          |             |             |

# An Introduction to Approximation Algorithms

# Daya Gaur

#### Department of Computer Science and Engineering Indian Institute of Technology Ropar IGGA Workshop at DAIICT

## 14 March 2012

| Introduction | Lower bounds   | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|----------------|--------------|----------|-------------|-------------|
|              |                |              |          |             |             |
|              |                |              |          |             |             |
| approxim     | nation algorit | :hms         |          |             |             |

- trade off accuracy for time.
- for every instance we compute an  $\alpha$  approximate solution in polynomial time.

## Example

Travelling salesperson: an approximation algorithm returns a tour no more than twice the length of the shortest tour *for every instance*.

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
| Types of     | approximati  | on algorith  | ms       |             |             |

- Good news: there are problems in NP that admit FPTAS.
- Bad news: there are problems in NP than do not admit any approximation algorithm (unless..)

Inapproximability can be thought of as more refined study of class NP-C.

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
|              |              |              |          |             |             |
| Vertex c     | over         |              |          |             |             |

$$\begin{split} \mathrm{IP}: & \mathrm{minimize} \ \sum_{v \in V} w_v x_v \\ & \mathrm{x}_u + \mathrm{x}_v > = 1 \ \forall (u,v) \in \mathrm{E} \\ & \mathrm{x}_v \in \{0,1\} \ \forall v \in \mathrm{V} \end{split}$$

$$\begin{split} LP: & \text{minimize } \sum_{v \in V} w_v x_v \\ & x_u + x_v > = 1 \; \forall (u,v) \in E \\ & x_v \geq 0 \; \forall v \in V \end{split}$$

・ロト ・回 ・ ヨ ・ モト ・ ヨ ・ うへぐ

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
|              |              |              |          |             |             |
| Matching     | g            |              |          |             |             |

$$\begin{split} D-LP: \text{minimize } & \sum_{(u,v)\in e} y_{uv} \\ & \sum_{v\in n(u)} y_{uv} \leq w_u \text{ for all } u \in V \\ & y_{uv} \geq 0 \ \forall v \in V \\ M: \text{minimize } & \sum_{(u,v)\in e} y_{uv} \\ & \sum_{v\in n(u)} y_{uv} \leq w_u \text{ for all } u \in V \\ & y_{uv} \in \{0,1\} \ \forall v \in V \end{split}$$

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
|              |              |              |          |             |             |
| Set cove     | er           |              |          |             |             |



$$\begin{split} \mathrm{IP}: & \mathrm{minimize} \; \sum_{s \in S} w_s x_s \\ & \sum_{s: v \in s} x_s > = 1 \; \forall v \in U \\ & x_s \in \{0,1\} \; \forall s \in S \end{split}$$

$$\begin{split} LP: & \text{minimize } \sum_{v \in v} w_s x_s \\ & \sum_{s: v \in s} x_s > = 1 \ \forall v \in U \\ & x_s \geq 0 \ \forall s \in S \end{split}$$

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
| Set cover:   | dual         |              |          |             |             |

$$\begin{split} LP: & \text{maximize } \sum_{u \in V} y_u \\ & \sum_{v \in s} y_v \leq w_s \ \forall s \in S \\ & y_v \geq 0 \ \forall v \in V \end{split}$$

$$\begin{split} \text{ILP}: & \text{maximize } \sum_{u \in V} y_u \\ & \sum_{v \in s} y_v \leq w_s \ \forall s \in S \\ & y_v \in \{0,1\} \ \forall v \in V \end{split}$$

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
| CL           |              |              |          |             |             |

# Shortest paths in digraphs

$$\begin{array}{c} \overbrace{6}^{6} & \overbrace{4}^{-5} & 1 \\ & 3 & 2 \end{array}$$

$$\operatorname{ip:minimize} \sum_{e \in e} w_e x_e$$

$$\sum_{e \in n(v)} x_e = \begin{cases} 1 & \text{if } v = s \\ -1 & \text{if } v = t \\ 0 & \text{otherwise} \end{cases}$$

$$x_e \in \{0,1\} \ \forall e \in E$$
vertex edge incidence matrix (u, e) is 1 is edge goes out from u

vertex, edge incidence matrix. (u, e) is 1 is edge goes out from u, -1 otherwise.

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
| Constrai     | ned shortest | paths        |          |             |             |

$$\begin{split} \mathrm{ip}: \mathrm{minimize} \ & \sum_{e \in e} w_e x_e \\ & \sum_{e \in n(v)} x_e = \left\{ \begin{array}{ll} 1 & \text{if } v = s \\ -1 & \text{if } v = t \\ 0 & \text{otherwise} \\ & \sum_{e \in e} d_e x_e \leq d \\ & x_e \in \{0,1\} \forall e \in e \end{array} \right. \end{split}$$

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
| _            |              |              |          |             |             |
| Constrai     | ned shortest | paths        |          |             |             |

$$\begin{split} \mathrm{IP}_1 : \min \ \sum_{e \in e} w_e x_e + \lambda (\sum_{e \in e} d_e x_e - d) \\ \sum_{e \in n(v)} x_e = \begin{cases} 1 & \text{if } v = s \\ -1 & \text{if } v = t \\ 0 & \text{otherwise} \end{cases} \\ \sum_{e \in e} d_e x_e \leq d \\ x_e \in \{0,1\} \ \forall e \in e \end{split}$$

Let x\* be the optimal integral solution to the constrainted shortest path problem.  $v(ip,x*) \ge v(IP_1,x*)$  for  $\lambda \ge 0$ .

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
|              |              |              |          |             |             |
| Constrai     | ned shortest | paths        |          |             |             |

$$\begin{split} \mathrm{IP}_{\mathrm{L}} : \min \ \sum_{e \in \mathrm{e}} \mathrm{w}_{e} \mathrm{x}_{e} + \lambda (\sum_{e \in \mathrm{e}} \mathrm{d}_{e} \mathrm{x}_{e} - \mathrm{d}) \\ \sum_{e \in \mathrm{n}(\mathrm{v})} \mathrm{x}_{e} = \begin{cases} 1 & \text{if } \mathrm{v} = \mathrm{s} \\ -1 & \text{if } \mathrm{v} = \mathrm{t} \\ 0 & \text{otherwise} \\ \mathrm{x}_{e} \in \{0, 1\} \ \forall \mathrm{e} \in \mathrm{e} \end{cases} \end{split}$$

Let x' be the optimal integral solution to  $IP_L$ .  $v(IP_1,x*) \geq v(IP_L,x') \ \forall \lambda \geq 0.$ 

#### Theorem

The value of optimal solution to  ${\rm IP}_{\rm L}$  is a lower bound on the value of x\*.

| Introduction | Lower bounds  | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|---------------|--------------|----------|-------------|-------------|
|              |               |              |          |             |             |
|              |               |              |          |             |             |
| Lagrangi     | an relaxatior | า            |          |             |             |

- $\bullet~\mathrm{IP}_\mathrm{L}$  is the lagrangian relaxation.
- we want the best possible lower bound, therefore find  $\lambda$  such that optimal to  $IP_L$  maximized.
  - largarangian can be solved using subgradient methods (note that the function might not be differentiable).
  - or using column generation (dantzig-wolfe decomposition).
  - lagrangian bound is atleast as good as the linear programming bound, for integral polytopes the two bounds coincide

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
| Greedy a     | lgorithm for | set cover    |          |             |             |



| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
| Analysis     |              |              |          |             |             |
| Analysis     |              |              |          |             |             |

# Proof.

$$\begin{split} \sum_{e \in u} p(e) &= w(sol) \\ \text{consider a set } s &= (s_1, \dots, s_k) \\ \text{for all } i, p(s_i) \leq \frac{w(s)}{k-i} \\ \sum_{s_i \in s} p(s_i) \leq w(s)h(k) \\ p(e)/h(n) \text{ is feasible in the dual} \\ \text{by weak duality the performance ratio is } h(n). \end{split}$$

(ロ) (四) (注) (注) (注) 注

 $\mathbf{s}_i'\mathbf{s}$  are ordered in the order they are covered by the greedy.

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
|              |              |              |          |             |             |
| Vertex c     | over         |              |          |             |             |

$$\begin{split} \mathrm{ip}: \mathrm{minimize} & \sum_{v \in v} w_v x_v \\ \mathrm{x}_u + \mathrm{x}_v > = 1 \ \forall (u,v) \in \mathrm{e} \\ & \mathrm{x}_v \in \{0,1\} \ \forall v \in v \end{split}$$

$$\begin{split} \mathrm{lp:minimize} & \sum_{v \in v} w_v x_v \\ \mathrm{x}_u + \mathrm{x}_v > &= 1 \ \forall (u,v) \in \mathrm{e} \\ & \mathrm{x}_v \geq 0 \ \forall v \in v \end{split}$$

let  $\mathbf{x}^*$  be the optimal lp solution.

$$x_v = \begin{cases} 1 & \text{if } x_v^* >= \frac{1}{2} \\ 0 & \text{otherwise.} \end{cases}$$

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
| Vertex co    | over         |              |          |             |             |

- $\bullet\,$  each constraint contains atleast one variable with value  $\geq 1/2$  in  $x^*.$
- rounding gives a feasible integral solution.
- value of the integral solution is at most double the value of the optimal lp solution.

| Introduction | Lower bounds  | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|---------------|--------------|----------|-------------|-------------|
|              |               |              |          |             |             |
| Half inte    | grality of ve | rtex cover   |          |             |             |

## \_\_\_\_\_

### Definition

A solution to an LP is an extreme point if it cannot be expressed as a convex combination of two other feasible solutions.

#### Lemma

Every extreme point solution is half integral i.e.,  $x_v \in \{0, 1/2, 1\}$ .

# Proof.

$$\begin{split} V_p &= \{ v \mid x_v^* > 1/2 \} \qquad V_n = \{ v \mid x_v^* < 1/2 \} \\ a_v &= \begin{cases} x_v^* + \varepsilon & \text{if } v \in V_p \\ x_v^* - \varepsilon & \text{if } v \in V_n \\ x_v^* & \text{otherwise.} \end{cases} \quad b_v = \begin{cases} x_v^* - \varepsilon & \text{if } v \in V_p \\ x_v^* + \varepsilon & \text{if } v \in V_n \\ x_v^* & \text{otherwise.} \end{cases} \end{split}$$

900

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
| Dui sin mu   |              |              |          |             |             |
| Pricing r    | netnoa tor v | ertex cover  |          |             |             |

#### Definition

 $\begin{array}{l} p_e \geq 0 \text{ is the price associated with each edge } e.\\ w_v \text{ is the cost associated with each vertex } v.\\ \text{price } p \text{ is fair if for every vertex } \sum_{e \ on \ v} p_e \leq w_v. \end{array}$ 

#### Theorem

A fair price is a lower bound on the cost of any vertex cover.

$$\begin{split} \sum_{\substack{e \text{ on } v \\ v \in s \, e \text{ on } v}} p_e &\leq w_v \\ \sum_{v \in s \, e \text{ on } v} p_e &\leq w(s) \end{split}$$

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
| Algorithm    | h            |              |          |             |             |

## Definition

A vertex is saturated if  $\sum_{e \text{ on } v} p_e = w_v$ an edge is uncovered if neither of its endpoints are in the cover.

```
price of e = 0
while there exists an
uncovered edge e
raise price on e
without violating
fairness
s = { v | v is saturated}
```

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
| <b>.</b>     |              |              |          |             |             |
| Analysis     |              |              |          |             |             |

## Theorem

Cost of vertex cover produced is at most twice the fair price.

## Proof.

Every vertex in the cover is saturated.

$$\sum_{e \text{ on } v} p_e = w_v$$
$$\sum_{e \text{ on } v} p_e = w(s)$$
$$2\sum_{e} p_e \ge w(s)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

| Introduction | Lower bounds  | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|---------------|--------------|----------|-------------|-------------|
|              |               |              |          |             |             |
| Complen      | nentary slack | ness         |          |             |             |

$$\begin{split} P: \min \quad \sum_{i=1}^n c_i x_i \\ \sum_{i=1}^n a_{ji} x_i \geq b_j, \quad j=1..m \\ & x_i \geq 0 \end{split}$$

$$\begin{split} D: \max \quad \sum_{j=1}^m b_j y_j \\ \sum_{j=1}^m a_{ji} y_j &\leq c_i, \quad i=1..n \\ & y_j \geq 0 \end{split}$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 - のへの

# Complementary slackness

#### Theore<u>m</u>

Let x, y be primal and dual feasible solutions. x, y are optimal if and only if following conditions are satisfied:

• 
$$x_i(\sum_{j=1}^m a_{ji}y_j - c_i) = 0$$
 for all  $1 \le i \le n$ 

$$2 y_j (\sum_{i=1}^n a_{ji} x_i - b_j) = 0 \text{ for all } 1 \le j \le m.$$

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
|              |              |              |          |             |             |

# Relaxed complementary slackness

## Definition

Let x, y be primal and dual feasible solutions. x, y are said to satisfy relaxed complementary slackness condition if:

**2** 
$$x_i > 0 \implies \frac{c_i}{\alpha} \le \sum_{j=1}^m a_{ji} y_j \le c_i = 0$$
 for all  $1 \le i \le n$   
**2**  $y_j > 0 \implies (b_j \le \sum_{i=1}^n a_{ji} x_i \le \beta b_j) = 0$  for all  $1 \le j \le m$ 

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
|              |              |              |          |             |             |
| rcsc         |              |              |          |             |             |

### Theorem

If  $\mathrm{x},\mathrm{y}$  are feasible and satisfy rcsc then  $\sum_{i=1}^n \mathrm{c}_i \mathrm{x}_i \leq \alpha \beta \sum_{j=1}^m \mathrm{b}_j \mathrm{y}_j.$ 

# Proof.

$$\begin{split} &\sum_{i=1}^n c_i x_i \leq \alpha \sum_{i=1}^n \left(\sum_{j=1}^m a_{ij} y_j\right) x_i \\ &\sum_{j=1}^m \left(\sum_{i=1}^n a_{ij} x_i\right) y_j \leq \beta \sum_{j=1}^m b_j y_j \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
|              |              |              |          |             |             |

# Pricing method for vertex cover revisited

$$\begin{array}{l} \alpha = 1, \beta = 2 \\ x_v > 0 \implies \sum_{e \text{ on } v} p_e = w_v \\ p_e > 0 \implies x_u + x_v \leq 2 \end{array}$$

- primal conditions: pick only saturated vertices in the cover.
- dual conditions: from every edge pick atmost two vertices in the cover.

primal conditions satisfied by pricing algorithm, dual conditions satisfied automatically

| Introduction |    |   |    | Low | er b | oun | ds |   | Du | al fi | ttinį | g | F | Roui | n din | g | F | Prim | al-d | ual | F | oint o | over |  |
|--------------|----|---|----|-----|------|-----|----|---|----|-------|-------|---|---|------|-------|---|---|------|------|-----|---|--------|------|--|
|              |    |   |    |     |      |     |    |   |    |       |       |   |   |      |       |   |   |      |      |     |   |        |      |  |
| Poir         | ٦t | С | OV | ve  | r    |     |    |   |    |       |       |   |   |      |       |   |   |      |      |     |   |        |      |  |
|              |    |   |    |     |      |     |    |   |    |       |       |   |   |      |       |   |   |      |      |     |   |        |      |  |
| -            |    |   |    |     |      |     |    |   |    |       |       |   |   |      |       |   |   |      |      |     |   |        |      |  |
| -            |    |   |    |     |      |     |    |   |    |       |       |   |   |      |       |   |   |      |      |     |   |        |      |  |
| -            |    |   |    |     |      |     |    |   |    |       |       |   |   |      |       |   |   |      |      |     |   |        |      |  |
| -            |    |   |    |     |      |     |    |   |    |       |       |   |   |      |       |   |   |      |      |     |   |        |      |  |
|              |    |   |    |     |      |     |    |   | [  |       |       |   |   |      |       |   |   |      |      |     |   |        |      |  |
| -            |    |   |    |     |      |     |    |   | [  |       |       |   |   |      |       |   | [ |      |      |     |   |        |      |  |
|              |    |   |    |     |      |     |    | 1 |    |       |       |   |   |      |       | 1 |   |      |      |     |   |        |      |  |

all the horizontal lines (12) comprise the optimal solution, and the greedy algorithm will pick all the vertical lines (22). the example can be generalized.

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
| 2D           |              |              |          |             |             |

The problem is equivalent to vertex cover in bipartite graphs in 2-D.

Theorem ( König–Egerváry)

The size of the minimum vertex cover is the same as the size of the maximum matching in a bipartite graph.



2-D can be solved optimally.

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
| d dimens     | sions        |              |          |             |             |

Let L be the set of all the axis parallel lines, associated with each line  $l \in L$  is a binary variable  $y_l$  whose value is 1 if the line is picked in the solution, 0 otherwise.  $L(x_i)$  is the set of axis parallel lines through point  $x_i$ .

$$\begin{array}{ll} {\sf IP:}\;\min\sum_{l\in L} y_l & (1) \\ & \sum_{l\,:\;l\in L(x_i)} y_l \geq 1 & \forall\; x_i & (2) \\ & y_l \in \{0,1\} & (3) \end{array}$$

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
|              |              |              |          |             |             |

The linear programming relaxation LP to the integer program IP, is obtained by replacing constraints of type (3) with non-negativity constraints  $y_1 \ge 0$ . The linear programming dual of LP is:

$$\begin{array}{ll} \text{.P-dual: max} \displaystyle\sum_{i=1}^{n} z_{i} & (4) \\ \displaystyle\sum_{i \ : \ l \in L(x_{i})} z_{i} \leq 1 & \forall \ l \in L & (5) \end{array}$$

 $z_i \ge 0 \tag{6}$ 

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
|              |              |              |          |             |             |
| Primal-d     | ual d approx | imation      |          |             |             |

- while there exists an uncovered point, the algorithm picks all the d axis parallel lines that go through the point.
- set  $y_l = 1$  if the line is picked by the algorithm else  $y_l = 0$ . let  $x_i$  be the uncovered point picked in iteration j, then set  $z_i = 1$ .
- solutions constructed above are feasible, and the value of the primal solution is at most d times the value of the dual solution, i.e. the performance ratio is d.

| Introduction | Lower bounds | Dual fitting | Rounding | Primal-dual | Point cover |
|--------------|--------------|--------------|----------|-------------|-------------|
|              |              |              |          |             |             |
|              |              |              |          |             |             |
|              |              |              |          |             |             |
|              |              |              |          |             |             |
|              |              |              |          |             |             |



R. Bar-Yehuda and S. Even, A linear-time approximation algorithm for the weighted cover problem. Journal of Algorithms, 2:198-203, 1981.



G. B. Dantzig, L. R. Ford, D. R. Fulkerson, *A primal-dual algorithm for linear programs*, In Linear Inequalities and Related Systems, Editors Kuhn and Tucker, pages 171–181, Princeton University Press, 1956.



T. Gonzalez, editor, Handbook of Approximation Algorithms and Meta Heuristics, CRC Press, 2007.

D. Hochbaum, editor, Approximation Algorithms for NP-hard problems, PWS Publishing, Boston, 1997.





Figures are from Wikipedia.