Rainbow Coloring of Graphs

L. Sunil Chandran

Computer Science and Automation Indian Institute of Science, Bangalore
Email: sunil@csa.iisc.ernet.in

What is Rainbow Coloring?

■ Consider an edge coloring, not necessarily proper.

What is Rainbow Coloring?

■ Consider an edge coloring, not necessarily proper.

- A path between two vertices is a rainbow path if no two edges in this path have the same color.

- If there is a rainbow path between every pair of vertices, then the coloring is called a rainbow coloring.
- If there is a rainbow path between every pair of vertices, then the coloring is called a rainbow coloring.
■ Minimum number of colors required to achieve this is called the rainbow connection number $r c(G)$.
- If there is a rainbow path between every pair of vertices, then the coloring is called a rainbow coloring.
■ Minimum number of colors required to achieve this is called the rainbow connection number $r c(G)$.

Examples

- The complete graph $K_{n}: r c\left(K_{n}\right)=1$.
- A path on vertices, $P_{n}: r c\left(P_{n}\right)=n-1$.
- A Tree on n vertices $T_{n}: r c\left(T_{n}\right)=n-1$.
- The complete bipartite graph $K_{n, n}: r c\left(K_{n, n}\right)=2$.

■ The cycle $C_{n}: r c\left(C_{n}\right)=\lceil n / 2\rceil$.

An obvious upper bound for $r c(G)$

- Consider a spanning tree T of G.
- Rainbow color T, and then give any used color to other edges.
- This is a rainbow coloring of G using $n-1$ colors. So, $r c(G) \leq n-1$.

The obvious lower bounds for $\mathrm{rc}(\mathrm{G})$

- The diameter of G.
- The number of bridges in G.

Algorithmic Question

■ Computing the rainbow connection number of an arbitrary graph is NP-Hard. (Chakraborty et.al. 2009)

- It is interesting to find good approximation algorithms.

This presentation is based on the following two recent papers from our group.

- Rainbow Connection Number and Connected Dominating Sets (L. S. Chandran, A. Das, Deepak Rajendraprasad, Nitin M. Vema)
- Rainbow Connection Number and Radius (M. Basavaraju, L. S. Chandran, D. Rajendraprasad, Arun Ramaswamy).

Previous Work

Most of the previous work in this area attempts to come up with a bound for $r c(G)$ in terms of n and the minimum degree δ.
A lower bound would be $3(n-2) /(\delta+1)-1$.
■ Introduced by Chartrand, Johns, McKeon, Zhang, 2008.

- (Cairo et. al. 2008) If $\delta \geq 3$, then $r c(G)<5 n / 6$.
\square (Cairo et. al. 2008) For general $\delta, r c(G) \leq c . n \log \delta / \delta$, where c is a constant.
- Schiermeyer proved for $\delta>3, r c(G) \leq 3 n / 4$ and conjectured for general case, $r c(G)$ may be at most $3 n /(\delta+1)$
- when $\delta \geq \epsilon n$, for some constant ϵ, Chakraborty showed that there exists a large constant C such that $r c(G) \leq C$.
- (Krivelevich and Yuster, 2010.) $r c(G) \leq 20 n / \delta$.

Connected Dominating set and Rainbow coloring

■ Can a small connected dominating set in G help to get small value for $r c(G)$? We may try the following intuitive approach.

- First get a rainbow coloring of the connected dominating set.
- Then color the remaining edges in such a way that for each vertex x outside there are two disjoint rainbow colored paths (rainbow colored using different set of colors).

The idea of Krivelevitch and Yuster

■ First devides G into subgraphs G_{1} and G_{2}.
■ Finds 2-step dominating sets in G_{1} and G_{2}.

- Make it a connected set D in G.
- From a vertex x outside D, reach D using the path in G_{1} and reach back from D to x using the path in G_{2}.
- The total colors used is $r c(D)+4$.

Our Improvement

- Krivelevitch has split the graph G into two graphs G_{1} and G_{2}.
- We will show that this is not necessary.

Two-way dominating set

A dominating set D is called a two-way dominating set if every pendant vertex belongs to D. if $G[D]$ is connected then it is called a connected two-way dominating set.

In terms of two-way dominating set

$$
r c(G) \leq r c(G[D])+3
$$

The idea

■ Let D be the two-way dominating set. Color the edges of $G[D]$ using $r c(G[D])=k$ colors.

- We group the vertices of $V^{\prime}=V-D$ into three sets X, Y, Z.

■ Z is the set of isolated vertex in $G\left[V^{\prime}\right]$
■ X, Y form a bipartition based on a spanning forest of the induced subgraph on $V^{\prime}-D$.

■ $X-D$ edges are given color $k+1, Y-D$ edges are given color $k+2$. Exactly one edge from z to D is given color $k+1$, for $z \in Z$. Edges within $G\left[V^{\prime}\right]$ are colored $k+3$.

For every connected graph G, with minimum degree $\delta \geq 2$, $r c(G) \leq \gamma_{c}(G)+2$

lower and upper bounds for the some graph classes.

■ Interval graphs: $\operatorname{diam}(G) \leq r c(G) \leq \operatorname{diam}(G)+1$

- AT-free graphs: $\operatorname{diam}(G) \leq r c(G) \leq \operatorname{diam}(G)+3$
- Circular Arc Graphs: $\operatorname{diam}(G) \leq r c(G) \leq \operatorname{diam}(G)+4$.

Approximation algorithms for these graph classes

- Interval graphs: Additive 1 factor.
- AT-free graphs: Additive 3 factor.
- Circular Arc Graphs: Additive 4 factor.

two-way two-step dominating set

A two-step dominating set D is called a two-way two-step dominating set if (1) every pendant vertex belongs to D and (2) every vertex in $N^{2}(D)$ has at least 2 neighbors in $N^{1}(D)$.

Settles the conjecture of Shearmayer

- A similar but little more detailed strategy allows us settle the conjecture of Shearmayer: $r c(G) \leq 3 n /(\delta+1)+3$

Based on Radius

- $r c(G) \leq r(r+2)$, where r is the radius.
- This is bound is also shown to be tight.

Based on radius and the largest isometric cycle.

■ Let t be the length of the largest isometric cycle in G. Then $r c(G) \leq r t$
■ Let k be the chordality of G. Then $t \leq k$. Thus $r c(G) \leq r k$.
■ Example: For chordal graphs, $r c(G) \leq 3 r$. Thus we have a 3-factor approximation algorithm for chordal graphs.

- In fact, it is known that the diameter of a chordal graph is about 2 r. So, we have a 1.5 factor approximation algorithm.

Rainbow Coloring of Graphs

Thank You

Email: sunil@csa.iisc.ernet.in

