Introduction to Computational Geometry

Sasanka Roy

Chennai Mathematical Institute

Organization of the Talk

Organization of the Talk

1. Preliminaries, Generic definition and Literature
2. Some technical details of easy versions
3. Conclusion

Organization of the Talk

1. Preliminaries, Generic definition and Literature
2. Some technical details of easy versions
3. Conclusion

What are we going to talk about?

What are we going to talk about?

We have some data

What are we going to talk about?

We have some data

Geometric Data

What are we going to talk about?

We have some data
Geometric Data
Geometric Data ????

What are we going to talk about?

We have some data
Geometric Data ????
Geometric Data
What do I mean ????

What are we going to talk about?

We have some data
Geometric Data ????
I mean: we have

Geometric Data
What do I mean ????

What are we going to talk about?

We have some data
Geometric Data ????

I mean: we have points,

Geometric Data
What do I mean ????

What are we going to talk about?

We have some data
Geometric Data ????
Geometric Data
What do I mean ????
I mean: we have points, line segments,

What are we going to talk about?

We have some data
Geometric Data ????
Geometric Data
What do I mean ????
I mean: we have points, line segments, polygons etc.

What are we going to talk about?

We have some data
Geometric Data ????
Geometric Data
What do I mean ????
I mean: we have points, line segments, polygons etc.

What are we going to talk about?

We have some data
Geometric Data ????
Geometric Data
What do I mean ????
I mean: we have points, line segments, polygons etc.

We want to get answers to the specific questions

What are we going to talk about?

We have some data
Geometric Data ????
Geometric Data
What do I mean ????
I mean: we have points, line segments, polygons etc.

We want to get answers to the specific questions
Closest points to the line segments

What are we going to talk about?

We have some data
Geometric Data ????

Geometric Data
What do I mean ????

I mean: we have points, line segments, polygons etc.

We want to get answers to the specific questions
Closest points to the line segments

What are we going to talk about?

We have some data
Geometric Data ????

Geometric Data
What do I mean ????

I mean: we have points, line segments, polygons etc.

We want to get answers to the specific questions
Closest points to the line segments
Point inside the simple polygon

What are we going to talk about?

We have some data
Geometric Data ????
Geometric Data
What do I mean ????
I mean: we have points, line segments, polygons etc.

We want to get answers to the specific questions
Closest points to the line segments
Point inside the simple polygon

What are we going to talk about?

We have some data
Geometric Data ????

Geometric Data
What do I mean ????

We want to get answers to the specific questions
Closest points to the line segments
Point inside the simple polygon

Can you be a bit Practical??

Planar Point Location

Which state has the site/point with
Latitude $=28^{\circ} 38^{\prime} \mathrm{N}$
Longitude $=72^{\circ} 12^{\prime} \mathrm{E}$

Planar Point Location

Which state has the site/point with
Latitude $=28^{\circ} 38^{\prime} \mathrm{N}$
Longitude $=72^{\circ} 12^{\prime} \mathrm{E}$

Planar Point Location

Which state has the site/point with
Latitude $=28^{\circ} 38^{\prime} \mathrm{N}$
Longitude $=72^{\circ} 12^{\prime} \mathrm{E}$

Can we view States as simple polygon?

Planar Point Location

Which state has the site/point with
Latitude $=13^{\circ} 08^{\prime} 10^{\prime \prime} \mathrm{N}$
Longitude $=80^{\circ} 27^{\prime} 40^{\prime \prime} \mathrm{E}$

Can we view States as simple polygon?

simple polygon: Closed region whose boundary is formed by non-intersecting line segments

Planar Point Location

Which state has the site/point with
Latitude $=13^{\circ} 08^{\prime} 10^{\prime \prime} \mathrm{N}$
Longitude $=80^{\circ} 27^{\prime} 40^{\prime \prime} \mathrm{E}$

Can we view States as
simple polygon? Yes

simple polygon: Closed region whose boundary is formed by non-intersecting line segments

Formally Planar Point Location

Given a planar subdivision S of $\mathrm{O}(\mathrm{n})$ vertices/faces/edges

Formally Planar Point Location

Given a planar subdivision S of $\mathrm{O}(\mathrm{n})$ vertices/faces/edges

Formally Planar Point Location

Given a planar subdivision S of $\mathrm{O}(\mathrm{n})$ vertices/faces/edges

Formally Planar Point Location

Given a planar subdivision S of $\mathrm{O}(\mathrm{n})$ vertices/faces/edges

Formally Planar Point Location

Given a planar subdivision S of $\mathrm{O}(\mathrm{n})$ vertices/faces/edges

Formally Planar Point Location

Given a planar subdivision S of $\mathrm{O}(\mathrm{n})$ vertices/faces/edges

Formally Planar Point Location

Given a planar subdivision S

Preprocess S such that:

Formally Planar Point Location

Given a planar subdivision S

Preprocess S such that:
For any query point q,

Formally Planar Point Location

Given a planar subdivision S

Preprocess S such that:
For any query point q,
The region/face R containing q can be reported efficiently.

Questions?

Questions?

1. How much is the preprocessing Time?

Questions?

1. How much is the preprocessing Time?
2. How much space is required?

Questions?

1. How much is the preprocessing Time?
2. How much space is required?
3. How much is the query time?

Organization of the Talk

1. Preliminaries, Generic definition and Literature
2. Some technical details of easy versions
3. Conclusion

For convex polygon

$P \rightarrow$ The Geometric Objects is a Convex Polygon with n edges

For convex polygon

$P \rightarrow$ The Geometric Objects is a Convex Polygon with n edges

For convex polygon

$P \rightarrow$ The Geometric Objects is a Convex Polygon with n edges
Whether q is inside or outside?

For convex polygon

$P \rightarrow$ The Geometric Objects is a Convex Polygon with n edges
Whether q is inside or outside?
Clue!! from area

For convex polygon

$P \rightarrow$ The Geometric Objects is a Convex Polygon with n edges
Whether q is inside or outside?
Clue!! from area

Complexity:

For convex polygon

$P \rightarrow$ The Geometric Objects is a Convex Polygon with n edges
Whether q is inside or outside?
Clue!! from area

Complexity:
$\mathrm{O}(\mathrm{n})$

For convex polygon

$P \rightarrow$ The Geometric Objects is a Convex Polygon with n edges
Now preprocess P to answer the question quickly

For convex polygon

$P \rightarrow$ The Geometric Objects is a Convex Polygon with n edges
Now preprocess P to answer the question quickly
Clue!!
Diagonal

For convex polygon

$P \rightarrow$ The Geometric Objects is a Convex Polygon with n edges
Now preprocess P to answer the question quickly
Clue!!
Diagonal

Triangulated Convex polygon

For convex polygon

$P \rightarrow$ The Geometric Objects is a Convex Polygon with n edges
Now preprocess P to answer the question quickly
Clue!!

For convex polygon

$P \rightarrow$ The Geometric Objects is a Convex Polygon with n edges
Now preprocess P to answer the question quickly
Clue!!

May we have an angular order of the triangles please!!

For convex polygon

$P \rightarrow$ The Geometric Objects is a Convex Polygon with n edges
Now preprocess P to answer the question quickly
Clue!!

May we have an angular order of the triangles please!!
And then!!

Results

$P \rightarrow$ The Geometric Objects is a Convex Polygon with n edges
Now preprocess P to answer the question quickly

Results

$\mathrm{P} \rightarrow$ The Geometric Objects is a Convex Polygon with n edges
Now preprocess P to answer the question quickly

Preprocessing Time:
Preprocessing space requirement:
Query Time:
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\log \mathrm{n})$

For simple polygon

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges

For simple polygon

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges

Whether q is inside or outside?

For simple polygon

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges

Whether q is inside or outside?
What about Brute Force!!

For simple polygon

$P \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Whether q is inside or outside?
What about Brute Force!!

Can we use the convex polygon method/ area method?

For simple polygon

$P \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Whether q is inside or outside?
What about Brute Force!!

Can we use the convex polygon method/ area method?
Not easily!!

For simple polygon

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Whether q is inside or outside?
What about Brute Force!!

Can we use the convex polygon method/ area method?
Not easily!!
Then how do we solve??

For simple polygon

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Whether q is inside or outside?
What about Brute Force!!

Can we use the convex polygon method/ area method?
Not easily!!
Then how do we solve??
Shoot a horizontal ray R from q towards positive x -direction

For simple polygon

$P \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Whether q is inside or outside?
What about Brute Force!!

Can we use the convex polygon method/ area method?
Not easily!!
Then how do we solve??
Shoot a horizontal ray R from q towards positive x -direction
Odd number of intersection between R and P implies ==>>

For simple polygon

$P \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Whether q is inside or outside?
What about Brute Force!!

Can we use the convex polygon method/ area method?
Not easily!!
Then how do we solve??
Shoot a horizontal ray R from q towards positive x -direction
Odd number of intersection between R and P implies ==>> q is inside P

For simple polygon

$P \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Whether q is inside or outside? What about Brute Force!!

Can we use the convex polygon method/ area method?
Not easily!!
Then how do we solve??
Shoot a horizontal ray R from q towards positive x -direction
Odd number of intersection between R and P implies ==>>

Complexity:

For simple polygon

$P \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Whether q is inside or outside? What about Brute Force!!

Can we use the convex polygon method/ area method?
Not easily!!
Then how do we solve??
Shoot a horizontal ray R from q towards positive x -direction
Odd number of intersection between R and P implies ==>>
Complexity: $\mathrm{O}(\mathrm{n})$

For simple polygon

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges

Now preprocess P to answer the question quickly

For simple polygon

$P \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Now preprocess P to answer the question quickly

Can we use the convex polygon triangulation method?

For simple polygon

$P \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Now preprocess P to answer the question quickly

Can we use the convex polygon triangulation method?
May be yes!!

For simple polygon

$P \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Now preprocess P to answer the question quickly

Can we use the convex polygon triangulation method?
May be yes!!
But how do we triangulate??

For simple polygon

$P \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Now preprocess P to answer the question quickly

Can we use the convex polygon triangulation method?
May be yes!!
But how do we triangulate??

How easily can we draw a diagonal??

For simple polygon

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges

Now preprocess P to answer the question quickly

Can we use the convex polygon triangulation method?
May be yes!!
But how do we triangulate??

How easily can we draw a diagonal??

For simple polygon

$P \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Now preprocess P to answer the question quickly

Can we use the convex polygon triangulation method?
May be yes!!
But how do we triangulate??

How easily can we draw a diagonal??

Finding a diagonal in linear time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Leftmost vertex u of P is a convex vertex (interior angle less than 180°)

Finding a diagonal in linear time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Leftmost vertex u of P is a convex vertex (interior angle less than 180°)

Let v and w be adjacent vertices of vertex u

Finding a diagonal in linear time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Leftmost vertex u of P is a convex vertex (interior angle less than 180°)

Let v and w be adjacent vertices of vertex u

If triangle uvw does not contain any other vertex u' then vw is a diagonal

Finding a diagonal in linear time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Leftmost vertex u of P is a convex vertex (interior angle less than 180°)

Let v and w be adjacent vertices of vertex u

If triangle uvw does not contain any other vertex u ' then vw is a diagonal

Finding a diagonal in linear time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Leftmost vertex u of P is a convex vertex (interior angle less than 180°)

Let v and w be adjacent vertices of vertex u

If triangle uvw does not contain any other vertex u ' then vw is a diagonal
Will triangle uvw always be empty?

Finding a diagonal in linear time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Leftmost vertex u of P is a convex vertex (interior angle less than 180°)

Let v and w be adjacent vertices of vertex u

If triangle uvw does not contain any other vertex u' then vw is a diagonal
Will triangle uvw always be empty? No

Finding a diagonal in linear time

$P \rightarrow$ The Geometric Objects is a simple Polygon with n edges

What should be the characteristic of u^{\prime} so that uu' is a diagonal

Will triangle uvw always be empty? No

Finding a diagonal in linear time

$P \rightarrow$ The Geometric Objects is a simple Polygon with n edges

What should be the characteristic of u^{\prime} so that uu' is a diagonal

Will triangle uvw always be empty? No
Then how do we solve??

Finding a diagonal in linear time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges

Finding a diagonal in linear time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Can we find a vertex u^{\prime} inside triangle uvw such that uu' is a diagonal?

Finding a diagonal in linear time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges

Can we find a vertex u ' inside triangle uvw such that uu' is a diagonal? Yes

Finding a diagonal in linear time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges

Can we find a vertex u ' inside triangle uvw such that uu' is a diagonal?

What should be the characteristic of u^{\prime} so that uu' is a diagonal

Finding a diagonal in linear time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges

Can we find a vertex u^{\prime} inside triangle uvw such that uu' is a diagonal

What should be the characteristic of u^{\prime} so that uu' is a diagonal
What about closest vertex u ' of u

Finding a diagonal in linear time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges

Can we find a vertex u^{\prime} inside triangle uvw such that uu' is a diagonal

What should be the characteristic of u^{\prime} so that uu' is a diagonal
What about closest vertex u' of $u \quad$ Wrong answer !!

Finding a diagonal in linear time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Can we find a vertex u ' inside triangle uvw such that uu' is a diagonal

What should be the characteristic of u^{\prime} so that uu' is a diagonal
What about closest vertex u ' of $u \quad$ Wrong answer !!

Finding a diagonal in linear time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges

Can we find a vertex u' inside triangle uvw such that uu' is a diagonal

What should be the characteristic of u^{\prime} so that uu' is a diagonal
What about closest vertex u' of $u \quad$ Wrong answer !!

Correct answer is:

Finding a diagonal in linear time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges

Can we find a vertex u ' inside triangle uvw such that uu' is a diagonal

What should be the characteristic of u^{\prime} so that uu' is a diagonal
What about closest vertex u' of $u \quad$ Wrong answer !!

Correct answer is: Leftmost vertex inside triangle uvw is u^{\prime}

Finding a diagonal in linear time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges

Can we find a vertex u ' inside triangle uvw such that uu' is a diagonal

What should be the characteristic of u^{\prime} so that uu' is a diagonal
What about closest vertex u' of u Wrong answer !!

Correct answer is: Leftmost vertex inside triangle uvw is u^{\prime}

Complexity:

Finding a diagonal in linear time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges

Can we find a vertex u ' inside triangle uvw such that uu' is a diagonal

What should be the characteristic of u^{\prime} so that uu' is a diagonal
What about closest vertex u' of u Wrong answer !!

Correct answer is: Leftmost vertex inside triangle uvw is u^{\prime}
Complexity: $\mathrm{O}(\mathrm{n})$

Triangulation in quadratic time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges

Triangulation in quadratic time

$P \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Find a diagonal uu' in linear time

Triangulation in quadratic time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Find a diagonal uu' in linear time

Triangulation in quadratic time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Find a diagonal uu' in linear time

Diagonal uu' partitions P in two smaller size polygon, say P_{1} and P_{2}

Triangulation in quadratic time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Find a diagonal uu' in linear time

Diagonal uu' partitions P in two smaller size polygon, say P_{1} and P_{2}

Triangulation in quadratic time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Find a diagonal uu' in linear time

Diagonal uu' partitions P in two smaller size polygon, say P_{1} and P_{2}
Recursively find diagonals of P_{1} and P_{2} until each smaller partition is a triangle

Triangulation in quadratic time

$P \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Find a diagonal uu' in linear time

Diagonal uu' partitions P in two smaller size polygon, say P_{1} and P_{2}
Recursively find diagonals of P_{1} and P_{2} until each smaller partition is a triangle

Triangulation in quadratic time

$P \rightarrow$ The Geometric Objects is a simple Polygon with n edges
Find a diagonal uu' in linear time

Diagonal uu' partitions P in two smaller size polygon, say P_{1} and P_{2}
Recursively find diagonals of P_{1} and P_{2} until each smaller partition is a triangle

Triangulation in quadratic time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges

Find a diagonal uu' in linear time

Diagonal uu' partitions P in two smaller size polygon, say P_{1} and P_{2}
Recursively find diagonals of P_{1} and P_{2} until each smaller partition is a triangle

Complexity:

Triangulation in quadratic time

$\mathrm{P} \rightarrow$ The Geometric Objects is a simple Polygon with n edges

Find a diagonal uu' in linear time

Diagonal uu' partitions P in two smaller size polygon, say P_{1} and P_{2}
Recursively find diagonals of P_{1} and P_{2} until each smaller partition is a triangle
Complexity: $O\left(n^{2}\right)$

Some results on triangulation

Some results on triangulation

Chazelle proposed a linear time algorithm for triangulation
Bernard Chazelle: Triangulating a Simple Polygon in Linear Time.
Discrete \& Computational Geometry 6: 485-524 (1991)

Some results on triangulation

Chazelle proposed a linear time algorithm for triangulation
Bernard Chazelle: Triangulating a Simple Polygon in Linear Time.
Discrete \& Computational Geometry 6: 485-524 (1991)

This is possible the hardest algorithm to implement.
No one till date possible dare to implement it !!! :(

Some results on triangulation

Chazelle proposed a linear time algorithm for triangulation
Bernard Chazelle: Triangulating a Simple Polygon in Linear Time.
Discrete \& Computational Geometry 6: 485-524 (1991)

This is possible the hardest algorithm to implement.
No one till date possible dare to implement it !!! :(

There exists simple $O(n \log n)$ time implementable algorithms :)

Some results on triangulation

Chazelle proposed a linear time algorithm for triangulation
Bernard Chazelle: Triangulating a Simple Polygon in Linear Time.
Discrete \& Computational Geometry 6: 485-524 (1991)
This is possible the hardest algorithm to implement.
No one till date possible dare to implement it !!! :(

There exists simple $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time implementable algorithms :)
Preparata, and Shamos: Computational Geometry - An Introduction (Book)

Some results on triangulation

Chazelle proposed a linear time algorithm for triangulation
Bernard Chazelle: Triangulating a Simple Polygon in Linear Time. Discrete \& Computational Geometry 6: 485-524 (1991)

This is possible the hardest algorithm to implement.
No one till date possible dare to implement it !!! :(

There exists simple $O(n \log n)$ time implementable algorithms :)
Preparata, and Shamos: Computational Geometry - An Introduction (Book)
People are still looking for implementable linear time algorithms

Some results on triangulation

Chazelle proposed a linear time algorithm for triangulation
Bernard Chazelle: Triangulating a Simple Polygon in Linear Time. Discrete \& Computational Geometry 6: 485-524 (1991)

This is possible the hardest algorithm to implement.
No one till date possible dare to implement it !!! :(

There exists simple $O(n \log n)$ time implementable algorithms :)
Preparata, and Shamos: Computational Geometry - An Introduction (Book)
People are still looking for implementable linear time algorithms
But we want planar point location not triangulation !!

Planar Point Location

Given a planar subdivision S

Preprocess S such that:
For any query point q,
The region/face R containing q can be reported efficiently.

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Fact : S has $\mathrm{n} / 2$ vertices with degree at most 9 [because S is planar]

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Fact: S has $n / 2$ vertices with degree at most 9 [because S is planar]
Corollary : S has $\mathrm{n} / 18$ mutually non-adjacent vertices H with degree at most 9

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Corollary : S has $\mathrm{n} / 18$ mutually non-adjacent vertices H with degree at most 9

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Corollary : S has $\mathrm{n} / 18$ mutually non-adjacent vertices H with degree at most 9

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Corollary : S has $\mathrm{n} / 18$ mutually non-adjacent vertices H with degree at most 9

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Recursively do the same until only the three outside vertices are left

Corollary : S has $\mathrm{n} / 18$ mutually non-adjacent vertices H with degree at most 9

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Recursively do the same until only the three outside vertices are left

Corollary : S has $\mathrm{n} / 18$ mutually non-adjacent vertices H with degree at most 9

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Recursively do the same until only the three outside vertices are left

Corollary : S has $\mathrm{n} / 18$ mutually non-adjacent vertices H with degree at most 9

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Recursively do the same until only the three outside vertices are left

Corollary : S has $\mathrm{n} / 18$ mutually non-adjacent vertices H with degree at most 9

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Recursively do the same until only the three outside vertices are left

Corollary : S has $\mathrm{n} / 18$ mutually non-adjacent vertices H with degree at most 9

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Recursively do the same until only the three outside vertices are left

Corollary : S has $\mathrm{n} / 18$ mutually non-adjacent vertices H with degree at most 9

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Recursively do the same until only the three outside vertices are left

Corollary : S has $\mathrm{n} / 18$ mutually non-adjacent vertices H with degree at most 9

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Recursively do the same until only the three outside vertices are left

Corollary : S has $\mathrm{n} / 18$ mutually non-adjacent vertices H with degree at most 9

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Recursively do the same until only the three outside vertices are left

Corollary : S has $\mathrm{n} / 18$ mutually non-adjacent vertices H with degree at most 9

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Recursively do the same until only the three outside vertices are left

Corollary : S has $\mathrm{n} / 18$ mutually non-adjacent vertices H with degree at most 9

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Recursively do the same until only the three outside vertices are left

Corollary : S has $\mathrm{n} / 18$ mutually non-adjacent vertices H with degree at most 9

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

Recursively do the same until only the three outside vertices are left

Corollary : S has $\mathrm{n} / 18$ mutually non-adjacent vertices H with degree at most 9

Outline of Kirkpatrick Planar Point Location

Given a triangulated planar subdivision S inside a bounded triangle

1. Find mutually non-adjacent vertices H
2. Delete H
3. Re-triangulate induced S

Recursively do the same until only the three outside vertices are left

Corollary : S has $\mathrm{n} / 18$ mutually non-adjacent vertices H with degree at most 9

How the data structure looks like

How the data structure looks like

Finally we have the bounded triangle T_{0} as the root

How the data structure looks like

Finally we have the bounded triangle T_{0} as the root

How the data structure looks like

Finally we have the bounded triangle T_{0} as the root

1. Three triangles in previous step

How the data structure looks like

Finally we have the bounded triangle T_{0} as the root

1. Three triangles in previous step

How the data structure looks like

Finally we have the bounded triangle T_{0} as the root

1. Three triangles in previous step

2. Few more triangles interacting with previous triangles

How the data structure looks like

Finally we have the bounded triangle T_{0} as the root

1. Three triangles in previous step

2. Few more triangles interacting with previous triangles

How the data structure looks like

Finally we have the bounded triangle T_{0} as the root

1. Three triangles in previous step
2. Few more triangles interacting with previous triangles

Looks like a:

How the data structure looks like

Finally we have the bounded triangle T_{0} as the root

1. Three triangles in previous step
2. Few more triangles interacting with previous triangles

Looks like a: Tree

How the data structure looks like

Finally we have the bounded triangle T_{0} as the root

1. Three triangles in previous step

2. Few more triangles interacting with previous triangles

Looks like a: Tree
We name it :
Point Location Tree (PLT)

Characterization of PLT

Characterization of PLT

Characterization of PLT

1. Each nodes of PLT is a triangles interacting with $\mathrm{O}(1)$ leaf nodes which are also triangles

Characterization of PLT

1. Each nodes of PLT is a triangles interacting with $\mathrm{O}(1)$ leaf nodes which are also triangles
2. Leaf nodes of the tree are the original triangles of the planar subdivision we started with.

Characterization of PLT

1. Each nodes of PLT is a triangles interacting with $\mathrm{O}(1)$ leaf nodes which are also triangles
2. Leaf nodes of the tree are the original triangles of the planar subdivision we started with.
3. Depth of PLT is $O(\log n)$

Characterization of PLT

1. Each nodes of PLT is a triangles interacting with $\mathrm{O}(1)$ leaf nodes which are also triangles
2. Leaf nodes of the tree are the original triangles of the planar subdivision we started with.
3. Depth of PLT is $O(\log n)$
4. Construction time:

Characterization of PLT

1. Each nodes of PLT is a triangles interacting with $\mathrm{O}(1)$ leaf nodes which are also triangles
2. Leaf nodes of the tree are the original triangles of the planar subdivision we started with.
3. Depth of PLT is $O(\log n)$
4. Construction time: $O(n)$

Characterization of PLT

1. Each nodes of PLT is a triangles interacting with $\mathrm{O}(1)$ leaf nodes which are also triangles
2. Leaf nodes of the tree are the original triangles of the planar subdivision we started with.
3. Depth of PLT is $O(\log n)$
4. Construction time: $O(n)$
5. Space requirement:

Characterization of PLT

1. Each nodes of PLT is a triangles interacting with $\mathrm{O}(1)$ leaf nodes which are also triangles
2. Leaf nodes of the tree are the original triangles of the planar subdivision we started with.
3. Depth of PLT is $O(\log n)$
4. Construction time: $O(n)$
5. Space requirement: $O(n)$

Searching a query point q in PLT
©
© -1

Searching a query point q in PLT

1. Find if T_{0} contains q.

Searching a query point q in PLT

1. Find if T_{0} contains q.
2. If no, then report q is out of range.

Searching a query point q in PLT

1. Find if T_{0} contains q.
2. If no, then report q is out of range.
3. If yes, then find the leaf node of T_{0} containing q recursively until we reach the correct leaf nodes

Searching a query point q in PLT

1. Find if T_{0} contains q.
2. If no, then report q is out of range.
3. If yes, then find the leaf node of T_{0} containing q recursively until we reach the correct leaf nodes

Query time complexity:

Searching a query point q in PLT

Organization of the Talk

1. Preliminaries, Generic definition and Literature
2. Some technical details of easy versions
3. Conclusion

Planar Point Location

For a given a planar subdivision S

Planar Point Location

For a given a planar subdivision S

S can be preprocessed such that:
For any query point q,
The region/face R containing q can be reported efficiently.

Results

Results

Preprocessing Time:
$\mathrm{O}(\mathrm{n})$

Results

Preprocessing Time:
Preprocessing space requirement:

O(n)
O(n)

Results

Preprocessing Time:
Preprocessing space requirement:
Query Time:
$\mathrm{O}(\mathrm{n})$
O(n)
$\mathrm{O}(\log \mathrm{n})$

Thank You

