An Introduction to Quantum Algorithms: Shor's

 AlgorithmM. V. Panduranga Rao

Indian Institute of Technology Hyderabad

Outline

- Some Quantum Computing
- Some Number Theory
- Shor's algorithm for integer factoring

Quantum State Vector

- State of a Classical Deterministic Bit: Either 0 or 1
- Classical Probabilistic: $a \overline{0}+b \overline{1}$ such that $a+b=1$.
- A Quantum Bit (qubit!!): $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ where $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^{2}+|\beta|^{2}=1$
- In general, n qubits $\Rightarrow 2^{n}$-dimensional Hilbert space
- A quantum state vector is a ray in the 2^{n}-dimensional Hilbert space:
- $|\psi\rangle=\sum_{i=0}^{2^{n}-1} \alpha_{i}|i\rangle$
- where $\alpha_{i} \in \mathbb{C}$ and $\sum_{i=0}^{2^{n}-1}\left|\alpha_{i}\right|^{2}=1$

Classical Deterministic Evolution

$$
M=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$M_{i j}=1$ whenever there is a transition from configuration i to j.

Classical Probabilistic Evolution

$$
M=\left(\begin{array}{cccc}
0 & 3 / 4 & 0 & 0 \\
1 / 2 & 1 / 4 & 0 & 0 \\
1 / 2 & 0 & 1 / 3 & 0 \\
0 & 0 & 2 / 3 & 1
\end{array}\right)
$$

$\sum_{i} M_{i j}=1$.

Quantum Evolution

- The trajectory of a closed quantum system is described by the famous Schroedinger equation

$$
i \frac{h}{2 \pi} \frac{d}{d t}|\psi\rangle=H|\psi\rangle
$$

- If the system evolves from time t_{0} through t_{1}, the solution of Schroedinger equation is

$$
\left|\psi\left(t_{1}\right)\right\rangle=e^{-i H\left(t_{1}-t_{0}\right)}\left|\psi\left(t_{0}\right)\right\rangle
$$

where $U\left(t_{1}, t_{0}\right)=e^{-i H\left(t_{1}-t_{0}\right)}$ is a unitary operator: $U^{\dagger} U=U U^{\dagger}=I$.

(Projective) Measurements

"Opening" the closed system (peeking in for information):

- Observable: Hermitian Operator H defined as $\sum m P_{m}$ such that
- $\sum P_{m}=I$ and
- $P_{m}^{2}=P_{m}$ but $P_{m} P_{m^{\prime}}=0$ for $m \neq m^{\prime}$.
- Probability of obtaining $m=\| P_{m}|\psi\rangle \|^{2}$
- Post-measurement, the state collapses to $\frac{P_{m}|\psi\rangle}{\| P_{m}|\psi\rangle \|^{2}}$.

Example

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

$$
P_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right) \text { and } P_{1}=\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right)
$$

- Probability of observing a $0=|\alpha|^{2}$ at which point the system collapses to $|0\rangle$.
- Probability of observing a $1=|\beta|^{2}$ at which point the system collapses to $|1\rangle$.

Circuit Model of Quantum Computation

- A sequence of "gates" applied on qubit registers
- Measurements performed to extract information
- Gates, whatever function they implement, need to be unitary
- Can be decomposed into basic gates from universal sets of (unitary) gates, each of which operate on a small constant number of qubits
- Example- Discrete Fourier Transform:

$$
\begin{aligned}
& D F T_{q} \sum_{a} f(a)|a\rangle= \sum_{c} \tilde{f}(c)|c\rangle \\
& \text { where } \quad \tilde{f}(c)=\frac{1}{\sqrt{q}} \sum_{a} e^{\frac{2 \pi i a c}{q}} f(a)
\end{aligned}
$$

Strange features of the quantum world

- Superposition
- Entanglement E.g: $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$
- Interference of probability amplitudes

Integer factoring and its importance

- Given a natural number N that is a product of two prime numbers p_{1} and p_{2}
- Find p_{1} and p_{2}
- In time $O(\operatorname{poly}(\log N))$, for efficiency.
- Security of popular cryptosystems like RSA depends on the fact that we don't yet know an efficient classical algorithm for doing this!

Integer factoring reduces to order finding

- Let $1 \leq y \leq N$ and $\operatorname{gcd}(y, N)=1$. The order r of y $\bmod N$ is the least power of y congruent to $1 \bmod N$.
- Choose a y such that $\operatorname{gcd}(y, N)=1$. Then
- Theorem: If r is even for the y chosen and $x=y^{r / 2} \neq \pm 1$ $\bmod N$, then $\operatorname{gcd}(x \pm 1, N)$ is a non-trivial factor of N.
- Theorem: $\operatorname{Prob}\left[r\right.$ is even and $\left.y^{r / 2} \neq \pm 1 \bmod N\right] \geq 1 / 2$

An Example

- Let us try to factorize $N=15$.
- Candidate y 's are $\{2,4,7,8,11,13,14\}$.
- Say we pick 11 .
- $11^{a} \bmod N$ for $a=1,2,3,4, \ldots$ are $11,1,11,1, \ldots$
- Thus $r=2$, and $x=y^{\frac{r}{2}}=11$
- $\operatorname{gcd}(10,15)=5$ and $\operatorname{gcd}(12,15)=3$, which are the factors we are looking for.

Shor's algorithm (preparations)

- Given N choose $q=2^{L}$ between N^{2} and $2 N^{2}$
- Choose a random $y \bmod N$
- Prepare two quantum registers of L bits and range() qubits each as follows: $|00 \ldots 0\rangle|00 \ldots 0\rangle$

Apply DFT on first register

$|00 \ldots 0\rangle|00 \ldots 0\rangle \rightarrow \frac{1}{\sqrt{q}} \sum_{a=0}^{q-1}|a\rangle|00 \ldots 0\rangle$

Evaluate function

$$
\frac{1}{\sqrt{q}} \sum_{a=0}^{q-1}|a\rangle|00 \ldots 0\rangle \rightarrow \frac{1}{\sqrt{q}} \sum_{a=0}^{q-1}|a\rangle\left|y^{a} \bmod N\right\rangle
$$

Measure second register

- $\left|\phi_{l}\right\rangle=\frac{1}{\sqrt{A+1}} \sum_{j=0}^{A}|j r+l\rangle(|z \bmod N\rangle)$ where A is the largest integer smaller than $\frac{q-l}{r} \sim \frac{q}{r}$.
- We make the simplifying assumption that r divides q exactly.

Apply DFT again on first register

$$
\begin{aligned}
& \\
& D F T_{q} \frac{1}{\sqrt{A+1}} \sum_{j=0}^{A}|j r+l\rangle=\sum_{c} \tilde{f}(c)|c\rangle \\
& \tilde{f}(c)=\frac{\sqrt{r}}{q} \sum_{j=0}^{\frac{q}{r}-1} e^{\frac{2 \pi i(j r+l) c}{q}}
\end{aligned}
$$

Basically, $\tilde{f}(c)=\frac{e^{\frac{2 \pi i l c}{c}}}{\sqrt{r}}$ if c is a multiple of $\frac{q}{r}$ and 0 otherwise.

Measure first register

- We see only those c that are integral multiples of $\frac{q}{r}$
- Thus, $\frac{c}{q}=\frac{j}{r}$
- If $\operatorname{gcd}(j, r)=1$, we are done!
- Thankfully, $\operatorname{Prob}(\operatorname{gcd}(j, r)=1) \geq \frac{1}{\log r}$ when j is chosen uniformly at random.
- Repeat $O(\log r)$ times for arbitrarily high success probability

Epilogue

- The case when r does not divide q exactly needs some more analysis
- But this is the general idea!
- Thus, we have a quantum algorithm that yields the prime factors of an integer in polynomial time with high probability.
- This is an example of the Hidden Subgroup Problem (for commutative groups)!
- Michael Nielsen and Isaac Chuang, Quantum Computation and Quantum Information. Cambridge University Press, 2010.
- Peter Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comput., 26(5), pp. 1484-1509, 1997.
- Artur Ekert and Richard Jozsa, Shor's Quantum Algorithm for Factorizing Numbers. Reviews of Modern Physics, 1995.

Thanks, Questions?

