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Outline

• Some Quantum Computing

• Some Number Theory

• Shor’s algorithm for integer factoring
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Quantum State Vector

• State of a Classical Deterministic Bit: Either 0 or 1

• Classical Probabilistic: a0 + b1 such that a+ b = 1.

• A Quantum Bit (qubit!!): |ψ〉 = α|0〉+ β|1〉
where α, β ∈ C and |α|2 + |β|2 = 1

• In general, n qubits ⇒ 2n-dimensional Hilbert space

• A quantum state vector is a ray in the 2n-dimensional Hilbert

space:

• |ψ〉 =
∑2n−1

i=0 αi|i〉

• where αi ∈ C and
∑2n−1

i=0 |αi|2 = 1
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Classical Deterministic Evolution

M =















0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1















Mij = 1 whenever there is a transition from configuration i to j.
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Classical Probabilistic Evolution

M =















0 3/4 0 0

1/2 1/4 0 0

1/2 0 1/3 0

0 0 2/3 1















∑

iMij = 1.
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Quantum Evolution

• The trajectory of a closed quantum system is described by the

famous Schroedinger equation

i
h

2π

d

dt
|ψ〉 = H|ψ〉.

• If the system evolves from time t0 through t1, the solution of

Schroedinger equation is

|ψ(t1)〉 = e−iH(t1−t0)|ψ(t0)〉

where U(t1, t0) = e−iH(t1−t0) is a unitary operator:

U †U = UU † = I .
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(Projective) Measurements

“Opening” the closed system (peeking in for information):

• Observable: Hermitian Operator H defined as
∑

mPm such

that

•

∑

Pm = I and

• P 2
m = Pm but PmPm′ = 0 for m 6= m′.

• Probability of obtaining m= ||Pm|ψ〉||2

• Post-measurement, the state collapses to
Pm|ψ〉

||Pm|ψ〉||2 .
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Example

|ψ〉 = α|0〉+ β|1〉

•

P0 =





1 0

0 0



 and P1 =





0 0

0 1





• Probability of observing a 0 = |α|2 at which point the system

collapses to |0〉.

• Probability of observing a 1 = |β|2 at which point the system

collapses to |1〉.
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Circuit Model of Quantum Computation

• A sequence of “gates” applied on qubit registers

• Measurements performed to extract information

• Gates, whatever function they implement, need to be unitary

• Can be decomposed into basic gates from universal sets of

(unitary) gates, each of which operate on a small constant

number of qubits

• Example– Discrete Fourier Transform:

DFTq
∑

a

f(a)|a〉 =
∑

c

f̃(c)|c〉

where f̃(c) =
1√
q

∑

a

e
2πiac

q f(a)
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Strange features of the quantum world

• Superposition

• Entanglement E.g:
|00〉+|11〉√

2

• Interference of probability amplitudes
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Integer factoring and its importance

• Given a natural number N that is a product of two prime

numbers p1 and p2

• Find p1 and p2

• In time O(poly(logN)), for efficiency.

• Security of popular cryptosystems like RSA depends on the fact

that we don’t yet know an efficient classical algorithm for doing

this!
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Integer factoring reduces to order finding

• Let 1 ≤ y ≤ N and gcd(y,N) = 1. The order r of y

mod N is the least power of y congruent to 1 mod N .

• Choose a y such that gcd(y,N) = 1. Then

• Theorem: If r is even for the y chosen and x = yr/2 6= ±1

mod N , then gcd(x± 1, N) is a non-trivial factor of N .

• Theorem: Prob[ r is even and yr/2 6= ±1 mod N ] ≥ 1/2
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An Example

• Let us try to factorize N = 15.

• Candidate y’s are {2, 4, 7, 8, 11, 13, 14}.

• Say we pick 11.

• 11a mod N for a = 1, 2, 3, 4, . . . are 11, 1, 11, 1, . . .

• Thus r = 2, and x = y
r
2 = 11

• gcd(10, 15) = 5 and gcd(12, 15) = 3, which are the factors

we are looking for.
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Shor’s algorithm (preparations)

• Given N choose q = 2L between N 2 and 2N 2

• Choose a random y mod N

• Prepare two quantum registers of L bits and range() qubits

each as follows: |00 . . . 0〉|00 . . . 0〉
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Apply DFT on first register

DFT

0

0
0
0
0

0

0

0

|00 . . . 0〉|00 . . . 0〉 → 1√
q

∑q−1
a=0 |a〉|00 . . . 0〉
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Evaluate function

DFT

a
F(a)=y  mod N

0

0
0
0
0

0

0

0

1√
q

∑q−1
a=0 |a〉|00 . . . 0〉 → 1√

q

∑q−1
a=0 |a〉|ya mod N〉
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Measure second register

DFT

a
F(a)=y  mod N

0

0
0
0
0

0

0

0

• |φl〉 = 1√
A+1

∑A
j=0 |jr + l〉(|z mod N〉)

where A is the largest integer smaller than q−l
r

∼ q
r
.

• We make the simplifying assumption that r divides q exactly.
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Apply DFT again on first register

DFT DFT

a
F(a)=y  mod N

0

0
0
0
0

0

0

0

DFTq
1√
A+ 1

A
∑

j=0

|jr + l〉 =
∑

c

f̃(c)|c〉

f̃(c) =

√
r

q

q

r
−1

∑

j=0

e
2πi(jr+l)c

q

Basically, f̃(c) = e
2πilc

q√
r

if c is a multiple of q
r

and 0 otherwise.
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Measure first register

DFT DFT

a
F(a)=y  mod N

0

0
0
0
0

0

0

0

• We see only those c that are integral multiples of q
r

• Thus, c
q
= j

r

• If gcd(j, r) = 1, we are done!

• Thankfully, Prob(gcd(j, r) = 1) ≥ 1
log r

when j is chosen

uniformly at random.

• Repeat O(log r) times for arbitrarily high success probability
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Epilogue

• The case when r does not divide q exactly needs some more

analysis

• But this is the general idea!

• Thus, we have a quantum algorithm that yields the prime factors

of an integer in polynomial time with high probability.

• This is an example of the Hidden Subgroup Problem (for

commutative groups)!
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Thanks, Questions?
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