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Outline

e Some Quantum Computing

e Some Number Theory

e Shor’s algorithm for integer factoring




Quantum State Vector
State of a Classical Deterministic Bit: Either O or 1
Classical Probabilistic: a0 —+ b1 such that a +bH=1.

A Quantum Bit (qubit!!): |¢0) = «|0) + 5|1)
where o, § € C and |a|* + |B]* = 1

In general, n qubits = 2"-dimensional Hilbert space

A guantum state vector is a ray in the 2"-dimensional Hilbert

space:

W> — Zfﬁ&l Oéz'm

where a;; € C and Zf:al ;| =1




Classical Deterministic Evolution
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Classical Probabilistic Evolution
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Quantum Evolution

e The trajectory of a closed quantum system is described by the

famous Schroedinger equation

@2—£W> Hl).

e If the system evolves from time ¢ through ¢, the solution of

Schroedinger equation is

Y(t1)) = e FIT0) | (t5))

where U (t1,ty) = e *(ti=%0) s 3 unitary operator:

UlU=UU"=1




(Projective) Measurements
“Opening” the closed system (peeking in for information):

e Observable: Hermitian Operator H defined as » ; m P, such
that

e > P,=1and

e P2 =P, butP, B, =0form#m.

e Probability of obtaining m = HPmWHP

Prm 1)
[|Prm |9)] ]2

e Post-measurement, the state collapses to




Example

and P, =
0 1

e Probability of observing a 0 = |«|* at which point the system

collapses to |0).

e Probability of observing a 1 = | 3|* at which point the system

collapses to |1).




Circuit Model of Quantum Computation

e A sequence of “gates” applied on qubit registers
e Measurements performed to extract information
e Gates, whatever function they implement, need to be unitary

e Can be decomposed into basic gates from universal sets of
(unitary) gates, each of which operate on a small constant
number of qubits

e Example— Discrete Fourier Transform:

DFT,Y f(a)la) = 3 f(e)le)

where




Strange features of the quantum world

® Superposition

e Entanglement E.Q: |OO>\}L§|H>

e Interference of probability amplitudes
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Integer factoring and its importance

Given a natural number /N that is a product of two prime

numbers p; and po

Find p; and po

In time O (poly(log N)), for efficiency.

Security of popular cryptosystems like RSA depends on the fact
that we don’t yet know an efficient classical algorithm for doing
this!
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Integer factoring reduces to order finding

Let 1 <y < N and gcd(y, N) = 1. The order r of y

mod IV is the least power of y congruentto 1 mod V.
Choose a y such that gcd(y, N) = 1. Then

Theorem: If 7 is even for the y chosen and z = /2 # +1
mod N, then ged(x + 1, N) is a non-trivial factor of V.

Theorem: Prob| ris evenand /2 # £1 mod N| > 1/2
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An Example
Let us try to factorize N = 15.
Candidate y's are {2,4,7,8,11,13, 14}.
Say we pick 11.
11 mod N fora=1,2,3,4,...arell,1,11,1,...

Thusr = 2, and x = yz = 11

ged(10,15) = 5 and ged(12, 15) = 3, which are the factors

we are looking for.
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Shor’s algorithm (preparations)

e Given N choose ¢ = 2% between N? and 2N?

e Choose arandom y mod N

e Prepare two quantum registers of L bits and range() qubits

each as follows: [00...0)|00...0)
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Apply DFT on first register

15



Evaluate function
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Measure second register

a
F(@=y mod N

\

A .
o [41) = = > im0 liT +1)(]z mod N))
where A is the largest integer smaller than QT_Z ~

q
oy

e \We make the simplifying assumption that r divides q exactly.
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Apply DFT again on first register

DFT

A

Basically, f(c) = \;; if ¢ is a multiple of 1 and 0 otherwise.
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Measure first register

-EEN
\

We see only those c that are integral multiples of %

Thus, € = £
q r

If ged (g, 7) = 1, we are done!

Thankfully, Prob(ged(j, ) = 1) > —— when j is chosen

gr
uniformly at random.

Repeat O(log 7“) times for arbitrarily high success probability
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Epilogue

The case when r does not divide g exactly needs some more

analysis
But this is the general idea!

Thus, we have a quantum algorithm that yields the prime factors

of an integer in polynomial time with high probability.

This is an example of the Hidden Subgroup Problem (for

commutative groups)!
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Thanks, Questions?
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