
Introduction to Distributed Algorithms

John Augustine

IIT Madras
augustine@cse.iitm.ac.in

January 17, 2013

Lets Start @ the Very Beginning . . .

Pre-60’s: Telephone, telegram and postal networks.

→ Bor̊uvka’s Algorithm for MST invented in 20’s

60’s and 70’s: Mostly small networks, simple topologies.

→ DARPA starts arpanet.

80’s: Larger networks (mostly in-house in large
organizations).

→ Email and other Internet technologies taking
shape.

→ Fisher, Lynch and Paterson show that
deterministic agreement is impossible in faulty
asynchronous networks.

The Big Bang

90’s: The Internet breaks into the scene.

→ Cell phones become popular in many countries.

→ PageRank algorithm invented at Stanford.
Google starts operation from a garage.

→ Distributed algorithms is established firmly.

The Expanding Universe of Networks

2000’s: Ubiquitously connected lifestyle

→ Cell Smart phones become popular in India.

→ Social Networks, P2P networks, . . .

→ Cloud computing, big data, . . .

Overview

1 Agreement

2 Leader Election

3 Minimum Spanning Tree

4 Maximal Independent Set

Audience Participation

→ Choose a number: 37 or 43.

→ You may communicate with your neighbours.

→ Goal: everybody must agree on same number.

Either number is fine. Just reach agreement!

What lessons can we learn?

Model or Setting

The number of models in distributed computing is only
slightly smaller than the number of papers published.

— David Peleg

Model or Setting

Distributed. Graph G = (V ,E).

→ Each node is a computer

→ Nodes have unique ids (think ip address)

→ Edges indicate communicability

→ Possibly weighted — bandwidth, transmission
cost, energy cost, etc.

Synchronous. Common clock tick. Rounds 1, 2, 3, . . .

→ Not realistic, but helpful in gaining traction.

Model or Setting

Message Passing. If e = (u, v) ∈ E , then u and v can directly
send messages to each other.

CONGEST . Size of each message is O(log n), where n = |V |.
→ Why O(log n)? Why not O(

√
n)?

In Each round r , each node executes following steps in sequence.

1 Perform local computation.

2 Send messages to neighbours.

3 Receive messages.

The Agreement Problem

Input. Each node starts with a bit value from {0, 1}.

Goal. Achieve following conditions.

Agreement. Every node must “output” the same
bit value.

Validity. At least one node must have started
with the agreed bit value.

Termination. Must terminate and nodes must know
when algorithm terminates.

Algorithm for the Agreement Problem

1

1

1

1

1

1

0
0

0

0

0

0

0

0

0 0

0

0

0

0
0

Algorithm for the Agreement Problem

1

1

1

1

1

1

0
0

0

0

0

0

0

0

0 0

0

0

0

0

1

0
1

1

1
1

1

1 1

1

1

1

1

Algorithm for the Agreement Problem

1

1

1

1

1

1

0
0

0

0

0

0

0

0

0 0

0

0

0

0

1

0
1

1

1
1

1

1 1

1

1

1

1
1 1

1

Algorithm for the Agreement Problem

How many rounds are required to reach agreement?

O(diameter) rounds
(Nodes need to know the diameter.)

What happens when there are NO nodes starting at 1?

Validity maintained.

Algorithm for the Agreement Problem

How many rounds are required to reach agreement?

O(diameter) rounds
(Nodes need to know the diameter.)

What happens when there are NO nodes starting at 1?

Validity maintained.

Algorithm for the Agreement Problem

How many rounds are required to reach agreement?

O(diameter) rounds
(Nodes need to know the diameter.)

What happens when there are NO nodes starting at 1?

Validity maintained.

Algorithm for the Agreement Problem

How many rounds are required to reach agreement?

O(diameter) rounds
(Nodes need to know the diameter.)

What happens when there are NO nodes starting at 1?

Validity maintained.

How Good is the Algorithm?

Time complexity. O(diameter)

Message complexity. O(diameter×m) O(m). (Here m = |E |.)

Can we achieve O(n)?

How Good is the Algorithm?

Time complexity. O(diameter)

Message complexity. O(diameter×m) O(m). (Here m = |E |.)

Can we achieve O(n)?

Use a spanning tree!

How Good is the Algorithm?

Time complexity. O(diameter)

Message complexity. O(diameter×m) O(m). (Here m = |E |.)

Can we achieve O(n)?

Use a spanning tree!

Will that affect running time?

Agreement
?−−→ Leader Election

Agreement
?−−→ Leader Election

Each node performs the following.

1: Generate a random number (with sufficiently many bits).

2: Initialize (r , id) pair with r being its own random number and
id being its own id.

3: for i ← 1 to diameter do
4: Send (r , id) pair to neighbours.

5: Receive (r , id) pairs from neighbours.

6: Update its (r , id) pair if a bigger r value is received.

7: end for

Minimum Spanning Tree (MST)

→ Recall MST: spanning tree of G whose total edge weights is
minimum.

→ Goal: each node must know which of its incident edges belong
to the MST and which do not.

→ W.L.O.G., assume that all edge weights are distinct.

This implies a unique MST.

MST Basics

→ Let TM be the (unique MST) of G .

→ A fragment is a connected subtree of TM .

→ An outgoing edge of a fragment is an edge in E where one
adjacent node to the edge is in the fragment and the other is
not.

→ The minimum weight outgoing edge (MOE) of fragment T is
called M(T).

→ The following rule produces a MST.

→ Blue rule: Pick a fragment T and add M(T) to it (until
possible).

Synchronous GHS Algorithm
(Gallager, Humblet, and Spira)

→ Each node begins as a fragment by itself

→ All nodes end as one fragment — the MST.

→ Every fragment will have exactly one root node.

→ Each nodes in the fragment will know its parent and children.

→ Each fragment is identified by the identifier of its root and
each node knows this.

Finding Minimum Weight Outgoing
Edge

→ Root broadcasts a “command” to all nodes in the fragment
using the edges in the fragment.

→ Each node, on receiving command, checks its neighbours (in
increasing order of weight.)

→ (Once an edge is known to lead to another node in the same
fragment, it is not considered again.)

→ Each node reports its candidate MOE to the root by a
prioritized convergecast.

Only smaller weight edges progress toward root.

Combining Fragments

→ Each fragment combines with the fragment at the other end
of the edge.

→ If other fragment also selected the same edge:

Two fragments agree to combine at that point.

Endpoint with higher id becomes new root.

→ The (combined) root broadcasts a ”new-fragment” message
through the fragment edges and the MOE edges.

→ Each node updates its parent, children, root identifier.

Correctness

→ The algorithm essentially follows the blue rule.

→ Can a cycle be formed when merging fragments?

→ A directed graph is weakly connected if its undirected version
is connected.

Lemma

A weakly connected digraph in which each vertex has exactly one
outgoing edge has exactly one cycle.

Proof Hint.

Use induction. (See figure next slide.)

Illustration of Lemma

Correctness

→ Consider the digraph F on the fragments connected by MOE
edges.

The directions indicate which fragment wants to connect to
which other fragment.

Each fragment has exactly one outgoing edge.

→ Therefore, by Lemma 1, each weakly connected component of
F has exactly one cycle.

Correctness
Consider cycles in F .

10

8

6

5

4

2

1

13

9

3

3

Correctness
Consider cycles in F . They must contain exactly two fragments.

10

8

6

5

4

2

1

13

9

3

3

OK

Note same weights

Complexity Analysis

→ O(log n) phases.

→ Each phase takes O(n) time.

⇒ Hence, time complexity is O(n log n).

→ Each phase takes O(n) messages (for convergecast and
broadcast) plus the messages needed to find MOE.

→ The latter takes a total of O(|E |) for the entire algorithm,
because, a node checks a neighbour at most once.

⇒ Hence total message complexity is O(|E |+ n log n).

Maximal Independent Set Problem

Defn. A set of nodes is called an independent set if it contains no
pair of neighboring nodes.

Defn. An independent set is maximal if it cannot be increased to
form a larger independent set by the addition of other nodes.

→ Given an arbitrary network we want to find a maximal
independent set of nodes.

→ Each node must know if it is in MIS or not.

Appln. dominating sets, clusterhead selection ..

High Level Idea

Notation Let Γ(v) be the set of vertices in V that are adjacent to v .

Idea The algorithm proceeds in rounds; In every round

1 find an independent set S ,

2 add S to I (initially I is empty) and

3 delete S ∪ Γ(S) from the graph.

Luby’s Algorithm I

1: Uncolour all vertices.

2: for O(log n) rounds do
3: Nodes with degree 0 are coloured red and removed.

4: Each node v marks itself with prob 1
2d(v)

5: If two endpoints of an edge are coloured, unmark lower
degree endpoint (breaking ties arbitrarily).

6: Colour all marked nodes red

7: Colour neighbours of red nodes blue (in parallel)

8: Remove coloured nodes.

9: end for

Analysis
Key Idea: Constant fraction of edges removed each round (on

exp.)

v ∈ V is good if at least d(v)/3 neighbors of degree no more
than d(v); otherwise the vertex is bad.

Good Vertex Bad vertex

An edge is good if at least one of its endpoints is a good
vertex

bad if both endpoints are bad vertices.

We show that a good vertex is likely to have one of its lower
degree neighbors in MIS and thereby deleted from V .

Lemma

Let v ∈ V be a good vertex with degree d(v) > 0. Then, the
probability that some vertex w ∈ Γ(v) gets marked is at least
1− e−1/6.

Proof.

Each vertex w ∈ Γ(v) is marked independently with
probability 1/(2d(w)).

The probability that none of the neighbors of v gets marked is
at most (

1− 1

2d(v)

)d(v)/3

≤ e−1/6

Note: 1− e−1/6 = 0.153518275, which is small, but nevertheless a
constant!

Lemma

During any round, if a vertex w is marked then it is coloured red
with probability at least 1/2.

Proof.

The only reason a marked vertex w becomes unmarked is that
one of its neighbors of degree at least d(w) is also marked.

The probability of this happening is∑
x∈Γ(w)

1

2d(x)
≤

∑
x∈Γ(w)

1

2d(w)
=

d(w)

2d(w)
= 1/2

Lemma

The probability that a good vertex is either coloured red or blue in
one iteration is at least

(1− e−1/6)/2.

Note: 1−e−1/6

2 = 0.0767591376, a constant!

Lemma

In a graph G = (V ,E) the number of good edges is at least |E |/2.

Proof.

Direct the edges in E from the lower degree end-point to the
higher degree end-point breaking ties arbitrarily. Let di (v) and
do(v) be the in-degree and out-degree of v .

For each bad vertex v ,

do(v)− di (v) ≥ d(v)/3 =
do(v) + di (v)

3

Therefore,
do(v) ≥ 2di (v). (1)

The number of edges going into a bad vertex is at most half
the number of edges going out of that bad vertex.

Therefore, the number of edges going into bad vertices is at
most half the number of edges going out of bad vertices.

Proof (contd.)

.

Let E (S ,T) be the set of edges directed from vertices in S to
vertices in T ; and e(S ,T) = |E (S ,T)|.

Let VG and VB be the good and bad vertices, respectively.

|e(VB ,VB)|+ |e(VG ,VB)| ≤ 1

2
(|e(VB ,VB)|+ |e(VB ,VG)|)

Therefore,
|e(VB ,VB)| ≤ |e(VB ,VG)|,

implying that # of bad edges are less than the # of good
edges.

The Final Touch

Corollary

On expectation, at least 1−e−1/6|E |
4 edges are deleted in each

iteration. I.e., |E | × 0.0383795688 edges are deleted in each
iteration.

Theorem

Therefore, the expected number of iterations is O(log n).

Luby’s Algorithm II
1: {Each node executes the following code.}

2: while not deleted do
3: Generate a random number r .

4: Send your random number to neighbours.

5: Receive neighbours’ random numbers. Let r ′ be the max
among neighbours’ random numbers.

6: if r > r ′ then
7: Put self in MIS.

8: Send “delete” command to neighbours

9: end if

10: Delete self if “delete” command received.

11: end while

