Introduction to Distributed Algorithms

John Augustine

IIT Madras augustine@cse.iitm.ac.in

January 17, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lets Start @ the Very Beginning

Pre-60's: Telephone, telegram and postal networks.

 \rightarrow Borůvka's Algorithm for MST invented in 20's

60's and 70's: Mostly small networks, simple topologies.

 \rightarrow DARPA starts arpanet.

- **80's:** Larger networks (mostly in-house in large organizations).
 - \rightarrow Email and other Internet technologies taking shape.
 - → Fisher, Lynch and Paterson show that deterministic agreement is impossible in faulty asynchronous networks.

The Big Bang

・ロト・日本・モート モー うへぐ

90's: The Internet breaks into the scene.

- $\rightarrow\,$ Cell phones become popular in many countries.
- \rightarrow PageRank algorithm invented at Stanford. Google starts operation from a garage.
- $\rightarrow\,$ Distributed algorithms is established firmly.

The Expanding Universe of Networks

2000's: Ubiquitously connected lifestyle

 $\rightarrow\,$ Cell Smart phones become popular in India.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $\rightarrow\,$ Social Networks, P2P networks, \ldots
- $\rightarrow\,$ Cloud computing, big data, \ldots

Overview

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Agreement

- 2 Leader Election
- O Minimum Spanning Tree
- 4 Maximal Independent Set

Audience Participation

- \rightarrow Choose a number: 37 or 43.
- \rightarrow You may communicate with your neighbours.
- \rightarrow Goal: everybody must agree on same number.

Either number is fine. Just reach agreement!

What lessons can we learn?

Model or Setting

The number of models in distributed computing is only slightly smaller than the number of papers published.

- David Peleg

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Model or Setting

Distributed. Graph G = (V, E).

 $\rightarrow\,$ Each node is a computer

- \rightarrow Nodes have unique ids (think ip address)
- \rightarrow Edges indicate communicability
- \rightarrow Possibly weighted bandwidth, transmission cost, energy cost, etc.

Synchronous. Common clock tick. Rounds 1, 2, 3, ...

 \rightarrow Not realistic, but helpful in gaining traction.

Model or Setting

Message Passing. If $e = (u, v) \in E$, then u and v can directly send messages to each other.

CONGEST. Size of each message is $O(\log n)$, where n = |V|. \rightarrow Why $O(\log n)$? Why not $O(\sqrt{n})$?

In Each round r, each node executes following steps in sequence.

- Perform local computation.
- 2 Send messages to neighbours.
- Receive messages.

The Agreement Problem

Input. Each node starts with a bit value from $\{0, 1\}$.

Goal. Achieve following conditions.

Agreement. Every node must "output" the same bit value.

Validity. At least one node must have started with the agreed bit value.

Termination. Must terminate and nodes must know when algorithm terminates.

・ロト・日本・モート モー うへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• How many rounds are required to reach agreement?

O(diameter) rounds (Nodes need to know the diameter.)

What happens when there are NO nodes starting at 1? Validity maintained.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

• How many rounds are required to reach agreement? *O*(diameter) rounds (Nodes need to know the diameter.)

What happens when there are NO nodes starting at 1?
Validity maintained.

• How many rounds are required to reach agreement?

O(diameter) rounds (Nodes need to know the diameter.)

• What happens when there are NO nodes starting at 1?

Validity maintained.

• How many rounds are required to reach agreement?

O(diameter) rounds (Nodes need to know the diameter.)

What happens when there are NO nodes starting at 1?
Validity maintained.

How Good is the Algorithm?

Time complexity. O(diameter)

Message complexity. O(diameter \times m) O(m). (Here m = |E|.)

Can we achieve O(n)?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How Good is the Algorithm?

Time complexity. O(diameter)

Message complexity. $O(\text{diameter} \times m) O(m)$. (Here m = |E|.)

Can we achieve O(n)?

Use a spanning tree!

How Good is the Algorithm?

Time complexity. *O*(diameter)

Message complexity. $O(\text{diameter} \times m) O(m)$. (Here m = |E|.)

Can we achieve O(n)?

Use a spanning tree!

Will that affect running time?

$\textbf{Agreement} \xrightarrow{?} \textbf{Leader Election}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへの

Agreement $\xrightarrow{?}$ Leader Election

Each node performs the following.

- 1: Generate a random number (with sufficiently many bits).
- 2: Initialize (*r*, *id*) pair with *r* being its own random number and *id* being its own id.
- 3: for $i \leftarrow 1$ to diameter do
- 4: Send (r, id) pair to neighbours.
- 5: Receive (r, id) pairs from neighbours.
- 6: Update its (r, id) pair if a bigger r value is received.
- 7: end for

Minimum Spanning Tree (MST)

- \rightarrow Recall MST: spanning tree of G whose total edge weights is minimum.
- $\rightarrow\,$ Goal: each node must know which of its incident edges belong to the MST and which do not.

- $\rightarrow\,$ W.L.O.G., assume that all edge weights are distinct.
 - This implies a unique MST.

MST Basics

- \rightarrow Let T_M be the (unique MST) of G.
- \rightarrow A fragment is a connected subtree of T_M .
- \rightarrow An <u>outgoing edge</u> of a fragment is an edge in *E* where one adjacent node to the edge is in the fragment and the other is not.
- → The minimum weight outgoing edge (MOE) of fragment T is called M(T).
- \rightarrow The following rule produces a MST.
- → **Blue rule:** Pick a fragment T and add M(T) to it (until possible).

Synchronous GHS Algorithm (Gallager, Humblet, and Spira)

- \rightarrow Each node begins as a fragment by itself
- $\rightarrow\,$ All nodes end as one fragment the MST.
- $\rightarrow\,$ Every fragment will have exactly one root node.
- \rightarrow Each nodes in the fragment will know its parent and children.

 $\rightarrow\,$ Each fragment is identified by the identifier of its root and each node knows this.

Finding Minimum Weight Outgoing Edge

- $\rightarrow\,$ Root broadcasts a "command" to all nodes in the fragment using the edges in the fragment.
- $\rightarrow\,$ Each node, on receiving command, checks its neighbours (in increasing order of weight.)
- \rightarrow (Once an edge is known to lead to another node in the same fragment, it is not considered again.)

- $\rightarrow\,$ Each node reports its candidate MOE to the root by a prioritized convergecast.
 - Only smaller weight edges progress toward root.

Combining Fragments

- $\rightarrow\,$ Each fragment combines with the fragment at the other end of the edge.
- $\rightarrow\,$ If other fragment also selected the same edge:
 - Two fragments agree to combine at that point.
 - Endpoint with higher id becomes new root.
- \rightarrow The (combined) root broadcasts a "new-fragment" message through the fragment edges and the MOE edges.
- $\rightarrow\,$ Each node updates its parent, children, root identifier.

- $\rightarrow\,$ The algorithm essentially follows the blue rule.
- \rightarrow Can a cycle be formed when merging fragments?
- $\rightarrow\,$ A directed graph is weakly connected if its undirected version is connected.

Lemma

A weakly connected digraph in which each vertex has exactly one outgoing edge has exactly one cycle.

Proof Hint.

Use induction. (See figure next slide.)

Illustration of Lemma

- \rightarrow Consider the digraph *F* on the fragments connected by MOE edges.
 - The directions indicate which fragment wants to connect to which other fragment.
 - Each fragment has exactly one outgoing edge.
- \rightarrow Therefore, by Lemma 1, each weakly connected component of F has exactly one cycle.

Consider cycles in F.

Consider cycles in F. They must contain exactly two fragments.

Complexity Analysis

- $\rightarrow O(\log n)$ phases.
- \rightarrow Each phase takes O(n) time.
- \Rightarrow Hence, time complexity is $O(n \log n)$.
- \rightarrow Each phase takes O(n) messages (for convergecast and broadcast) plus the messages needed to find MOE.
- \rightarrow The latter takes a total of O(|E|) for the entire algorithm, because, a node checks a neighbour at most once.
- \Rightarrow Hence total message complexity is $O(|E| + n \log n)$.

Maximal Independent Set Problem

- **Defn.** A set of nodes is called an <u>independent set</u> if it contains no pair of neighboring nodes.
- **Defn.** An independent set is <u>maximal</u> if it cannot be increased to form a larger independent set by the addition of other nodes.

- $\rightarrow\,$ Given an arbitrary network we want to find a maximal independent set of nodes.
- $\rightarrow\,$ Each node must know if it is in MIS or not.
- Appln. dominating sets, clusterhead selection ...

High Level Idea

Notation Let $\Gamma(v)$ be the set of vertices in V that are adjacent to v.

Idea The algorithm proceeds in rounds; In every round

- (1) find an independent set S,
- 2 add S to I (initially I is empty) and
- **3** delete $S \cup \Gamma(S)$ from the graph.

Luby's Algorithm I

- 1: Uncolour all vertices.
- 2: for $O(\log n)$ rounds do
- 3: Nodes with degree 0 are coloured red and removed.
- 4: Each node v marks itself with prob $\frac{1}{2d(v)}$
- 5: If two endpoints of an edge are coloured, unmark lower degree endpoint (breaking ties arbitrarily).
- 6: Colour all marked nodes red
- 7: Colour neighbours of red nodes blue (in parallel)
- 8: Remove coloured nodes.
- 9: end for

Analysis

Key Idea: Constant fraction of edges removed each round (on exp.)

 v ∈ V is good if at least d(v)/3 neighbors of degree no more than d(v); otherwise the vertex is bad.

- An <u>edge is good</u> if at least one of its endpoints is a good vertex
- bad if both endpoints are **bad** vertices.
- We show that a good vertex is likely to have one of its lower degree neighbors in MIS and thereby deleted from V.

Let $v \in V$ be a good vertex with degree d(v) > 0. Then, the probability that some vertex $w \in \Gamma(v)$ gets marked is at least $1 - e^{-1/6}$.

Proof.

- Each vertex w ∈ Γ(v) is marked independently with probability 1/(2d(w)).
- The probability that none of the neighbors of v gets marked is at most

$$\left(1 - \frac{1}{2d(v)}\right)^{d(v)/3} \le e^{-1/6}$$

Note: $1 - e^{-1/6} = 0.153518275$, which is small, but nevertheless a constant!

During any round, if a vertex w is marked then it is coloured red with probability at least 1/2.

Proof.

- The only reason a marked vertex w becomes unmarked is that one of its neighbors of degree at least d(w) is also marked.
- The probability of this happening is

$$\sum_{x \in \Gamma(w)} \frac{1}{2d(x)} \le \sum_{x \in \Gamma(w)} \frac{1}{2d(w)} = \frac{d(w)}{2d(w)} = \frac{1}{2}$$

The probability that a good vertex is either coloured red or blue in one iteration is at least

$$(1-e^{-1/6})/2.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Note: $\frac{1-e^{-1/6}}{2} = 0.0767591376$, a constant!

In a graph G = (V, E) the number of good edges is at least |E|/2.

Proof.

- Direct the edges in *E* from the lower degree end-point to the higher degree end-point breaking ties arbitrarily. Let d_i(v) and d_o(v) be the in-degree and out-degree of v.
- For each bad vertex v,

$$d_o(v) - d_i(v) \ge d(v)/3 = \frac{d_o(v) + d_i(v)}{3}$$

Therefore,

$$d_o(v) \ge 2d_i(v). \tag{1}$$

- The number of edges going into a bad vertex is at most half the number of edges going out of that bad vertex.
- Therefore, the number of edges going into bad vertices is at most half the number of edges going out of bad vertices.

Proof (contd.)

- Let E(S, T) be the set of edges directed from vertices in S to vertices in T; and e(S, T) = |E(S, T)|.
- Let V_G and V_B be the good and bad vertices, respectively.

$$|e(V_B, V_B)| + |e(V_G, V_B)| \le \frac{1}{2}(|e(V_B, V_B)| + |e(V_B, V_G)|)$$

Therefore,

.

$$|e(V_B, V_B)| \leq |e(V_B, V_G)|,$$

implying that # of bad edges are less than the # of good edges.

The Final Touch

Corollary

On expectation, at least $\frac{1-e^{-1/6}|E|}{4}$ edges are deleted in each iteration. I.e., $|E| \times 0.0383795688$ edges are deleted in each iteration.

Theorem

Therefore, the expected number of iterations is $O(\log n)$.

Luby's Algorithm II

- 1: {Each node executes the following code.}
- 2: while not deleted do
- 3: Generate a random number *r*.
- 4: Send your random number to neighbours.
- 5: Receive neighbours' random numbers. Let r' be the max among neighbours' random numbers.
- 6: **if** r > r' **then**
- 7: Put self in MIS.
- 8: Send "delete" command to neighbours
- 9: end if
- 10: Delete self if "delete" command received.

11: end while

