Graph Partitioning

Abhiram Ranade IIT Bombay

A load balancing problem

- Input:
 - undirected graph G. Vertices = processes. Edgesinterprocess communication.
 - integer k = number of available processors.
- Output: Assign processes to processors

A load balancing problem

- Input:
 - undirected graph G. Vertices = processes. Edgesinterprocess communication.
 - integer k = number of available processors.
- Output: Assign processes to processors

The graph partitioning problem

- Input: undirected graph G, integer k
- Output: Partition into subgraphs G_1 , G_2 , ..., G_k with equal number of vertices, by removing minimum number of edges.

The graph partitioning problem

- Input: undirected graph G, integer k
- Output: Partition into subgraphs G₁, G₂, ..., G_k with equal number of vertices, by removing minimum number of edges.

Other motivations

- Divide and conquer algorithms on graphs.
 - Partition into balanced subgraphs.
 - Recurse on subgraphs.
 - Cost of combine step: high if large number of edges between subgraphs.
- Identify bottlenecks in graph for purpose of fault tolerance etc.
- Nice connections to geomtry.

Rest of this talk: k=2, i.e. Graph bisection

Outline

- Basic results
- Partitioning special classes of graphs
 - Planar graphs
 - FEM (finite element method) graphs
- Partitioning arbitrary graphs
 - Spectral Methods
 - More advanced methods
 - Heuristics

Some basic results

- NP-hard even for k=2.
 - Reduction from MAX-CUT.
- Polytime algorithm known for trees
 - Moderately hard exercise. Dynamic programming
- Other graph classes: next
- Approximation algorithm: O(log^{1.5}n) factor known.
 - intro to some of the ideas: later

Planar graphs

- NP-complete? Not known.
- Lipton-Tarjan Planar Separator Algorithm:
 - Any planar graph with n vertices can be bisected by removing O(Vn) vertices and incident edges.
 - $O(\forall n)$ edges for bounded degree graphs.
 - Algorithm may give O(\(\formall n\)) separator even if smaller exists.
 - Optimal for "Natural planar graphs" which cannot be bisected without removing $\Omega(\forall n)$ vertices.

Planar separator theorem

- Every planar graph can be bisected by removing $O(\sqrt{n})$ vertices.
- Lipton-Tarjan proof:
 - uses clever breadth first search.
- Today: Alternate proof
 - Elegant connection to geometry. Extends to other geometrically embedded graphs, e.g. FEM graphs.

Representing planar graphs by "kissing" disks

Circle packing theorem

Theorem [Koebe 1936] For every planar graph with n vertices, there exist disjoint circles $c_{1,}$ c_{2} , ..., c_{n} such that c_{i} and c_{j} are tangential iff v_{i} , v_{j} are connected by an edge.

...Kissing disk embedding

Circle packing example

(Wikipedia)

Algorithm to find a Planar Separator

- 1. Get a kissing disk embedding.
- 2. Stereographically project it onto a sphere.
- 3. Find "center point" of disk centers.
- 4. Adjust so that center point moves to sphere center
- 5. Separator = random great circle through center.

Theorem:

Each hemisphere has $\theta(n)$ vertices.

Expected number of edges cut = $O(\sqrt{n})$.

Remark

- Algorithm may not produce exact bisection, but say, ¼, ¾ split of vertices.
- Repeat on larger partition if balance not achieved. ¾ splits into 9/16, 3/16
- Combine $\frac{1}{4} + \frac{3}{16} = \frac{7}{16}$.
- Now we have better balance: 7/16, 9/16.
- Repeating log times suffices. Number of edges cut increase only by constant factor.

Stereographic projection

Input: Disk embedding on horizontal plane.

- Place a sphere on the plane.
- Point P' on plane mapped to P on sphere such that PP' passes through North Pole.
- Circles map to circles!

Algorithm to find a Planar Separator

- 1. Get a kissing disk embedding. ✓
- 2. Stereographically project it onto a sphere. ✓
- 3. Find "center point" of disk centers.
- 4. Adjust so that center point moves to sphere center
- 5. Separator = random great circle through center.

Centerpoint C of n points

C = point such that any plane through it has at least n/4 points on both sides.

- Centerpoints exist, and may not be unique.
- Approximate centerpoints are easily found.
 Will guarantee at least n/Q points on both sides, where Q maybe > 4.

Algorithm to find a Planar Separator

- 1. Get a kissing disk embedding. ✓
- 2. Stereographically project it onto a sphere. ✓
- 3. Find "center point" of disk centers. ✓
- 4. Adjust so that center point moves to sphere center
- 5. Separator = random great circle through center.

Adjusting the centerpoint

- Centerpoint shown in red.
- Project back onto inclined plane.
- Use a bigger sphere having same point of contact.
- How does red point move?

Where are we?

- We have a sphere with a disk on it for each vertex.
- Disks touch if corresponding vertices have an edge.
- Center of sphere = centerpoint of vertices.
- What will happen if we partition using some great circle?
- Centerpoint: $\theta(n)$ vertices will be on each side
- Will too many disks intersect with great circle?

How many disks intersect with a random great circle?

- Pick a random great circle = pick a random point as its north pole.
- Probability = Band area/sphere area = $2\pi rR/4\pi R^2 = r/2R$

disk of radius r R = sphere radius

Band in which north pole should lie to intersect with disk.

Expected number of intersections

- $E = r_1/2R + r_2/2R + ... r_n/2R$
- We know: $\pi r_1^2 + \pi r_2^2 + ... + \pi r_n^2 \le 4\pi R^2$
- E is maximized when all r_i are equal, $r_i \le 2R/Vn$
- $E \le n * (2R/\sqrt{n})/2R = \sqrt{n}$
- Plane has at least n/4 vertices on each side
- By removing incident edges on Vn vertices we get ¼ - ¾ partition of vertices.
- Clearly such a partition exists! QED!

Remarks

- Nice connection between graph theory and geometry.
- Great circle when projected back, becomes a circle on the graph. "Circle separator"
- Do we need circles? Can we hope to get good partitions using a straight line?
 - There exist graphs for which this is not possible.
- In practice, Lipton-Tarjan's original algorithm will be faster than above algorithm.

Finite Element Method (FEM) Graphs

http://www.geuz.org/gmsh/gallery/bike.png

FEM Graphs

- 3 dimensional object represented by collection of volumes, "elements"
- Element size:
 - Small where physical properties vary a lot.
 - Large where physical properties vary less.
- "Aspect ratio" of elements is small, i.e. elements are not flat/narrow.
 - Useful for to reduce floating point overflow..

FEM Graphs continued

- Effectively we have a "kissing disk" embedding of elements in 3 dimensional space.
- Theorem[Miller-Thurston 1990] A 3d FEM mesh with n elements of small aspect ratio can be bisected by removing O(n^{2/3}) edges.
- Partitioning FEM graphs is useful for load balancing on parallel computers.

Partitioning General Graphs

- Don't insist on bisection.
- Sparsity = |C|/|S|
- Cut ratio = |C|/(|S||V-S|)
- Sparsity/C.Ratio ≈ |V|
- We study algorithms that attempt to find cuts of minimum ratio.
- We can get bisection by repeating if necessary.

Strategy

Our optimization problem is expressed in the language of graphs.

- 1. Pose it as a problem on integer variables.
 - NP-complete.
- 2. Find a similar problem on real variables that can be solved in polynomial time.
- 3. Exploiting the symmetry, get back an integer solution. Hope: it is close to the optimal.

Algebraic definition of cut ratio

- x = bit vector. x_i = 1 iff ith vertex is in S.
- No. of crossing edges:

$$\sum_{(i,j)\in E} \left| x_i - x_j \right|$$

• $|S||V-S| = \sum_{i < j} |x_i - x_j|$

Want to minimize

$$\frac{\sum_{(i,j)\in E} \left| x_i - x_j \right|}{\sum_{i < j} \left| x_i - x_j \right|}$$

$$\min_{x_i \in \{0,1\}} \frac{\left|x_1 - x_2\right| + \left|x_1 - x_3\right| + \left|x_2 - x_3\right| + \left|x_3 - x_4\right|}{\left|x_1 - x_2\right| + \left|x_1 - x_3\right| + \left|x_1 - x_4\right| + \left|x_2 - x_3\right| + \left|x_2 - x_4\right| + \left|x_3 - x_4\right|}$$

General Algorithmic Strategy: Relaxation

- Problem 1: minimize $3x^2 5x$, x is an integer.
- Problem 2: minimize $3x^2$ 5x, x is real.
 - Easier to solve, make derivative = 0 etc.
 - min(Problem 1) ≥ min(Problem 2)
- Problem 2 = Relaxation of problem 1
- Strategy to solve problem 1: solve problem 2 and then take a nearby solution.
- Minimizing cut ratio: similar idea..

Relaxation to "solve" for cut ratio

 $\sum |x_i - x_j| \qquad \sum (x_i - x_j)^2$ • Want to find $r = \min_{x_i \in \{0,1\}} \frac{\sum_{i=1}^{n} x_i - x_i}{\sum_{i=1}^{n} |x_i - x_j|} = \min_{x_i \in \{0,1\}} \frac{\sum_{i=1}^{n} (x_i - x_j)^2}{\sum_{i=1}^{n} (x_i - x_j)^2}$

- Allow real values

 - We will "round" solution
 - high = 1. Low = 0.

Insist that x_i add to 1

Allow real values

- Suppose we can solve for x.

$$r \ge \min_{x_i \in R} \frac{\sum_{(i,j) \in E} (x_i - x_j)^2}{\sum_{i < j} (x_i - x_j)^2}$$

$$r \ge \min_{x \cdot 1 = 0} \frac{\sum_{(i,j) \in E} (x_i - x_j)^2}{\sum_{i < j} (x_i - x_j)^2}$$

contd.

$$Numerator = \sum_{(i,j) \in E} (x_i - x_j)^2 = x^T L x$$

L_{ij} = -1 if (i,j) is an edge, = degree(i) if i=j, =0 otherwise L = "Laplacian of the graph"

$$Deno\min ator = \sum_{i < j} (x_i - x_j)^2 = \sum_{i < j} x_i^2 - 2x_i x_j + x_j^2 = (n-1) \sum_i x_i^2 - 2\sum_{i > j} x_i x_j = n \sum_i x_i^2$$

$$r \ge \min_{x \cdot 1 = 0} \frac{\sum_{(i,j) \in E} (x_i - x_j)^2}{\sum_{i < j} (x_i - x_j)^2} = \min_{x \cdot 1 = 0} \frac{x^T L x}{n \sum_{i} x_i^2} = \frac{\sigma_2}{n}$$

 σ_2 is second smallest "Eigenvalue of L"

Can be calculated quickly. minimizing x can also be calculated.

Algorithm for finding good ratio cut

- 1. Construct Laplacian matrix
- 2. Find second smallest eigenvector
- 3. Choose threshold t.
- 4. Partition = $\{i \mid x_i \le t\}$, $\{i \mid x_i > t\}$

How to choose t? Try all possible choices, and take one having best ratio.

"Spectral Method": eigenvectors involved.

How good is the partition

- Cheeger's Theorem:
 - Partition found by previous algorithm will have cut ratio at most $\sqrt{8d\sigma_2}$ Difficult proof n
 - Optimal partition will have cut ratio at least $\frac{\sigma_2}{n}$ Just proved!
- Seems to work well in practice

Examples

- Cycle on n vertices: Spectral method finds optimal partition.
- Bounded degree planar graphs: Spectral method finds O(Vn) sized bisector.
- Binary hypercube: Spectral methods will find cut of ratio V4logn / n, whereas opt ratio = 1/n

Remarks about intuition

- How did we steer the analysis towards the Laplacian?
 - Experience
 - Laplacian arises in solving differential equation, where second eigenvalue gives how graph may "vibrate". Vibration mode points to cuts.
 - Laplacian is related to SVD, singular value decomposition. SVD of a point cloud identifies length, breadth, width of cloud. Small cuts are perpendicular to length.

Advanced methods

• Starting point:

$$r = \min_{x_i \in \{0,1\}} \frac{\sum_{(i,j) \in E} |x_i - x_j|}{\sum_{i \le j} |x_i - x_j|}$$

- Different ways to relax.
 - If you relax too much, you may be able to solve the new problem more easily, but the solution will be too far.
- Arora-Rao-Vazirani 04: stricter relaxation.
 Always give cut with ratio = O(vlog n) times optimal.

Heuristics

- Graph coarsening [Metis 04]:
 - Pick disjoint edges in graph.
 - Merge endpoints of each edge into a single vertex. (fast)
 - Repeat several times.
 - Find partition for final "coarse" graph using sophisticated method. (slow, but on small graph)
 - Final partition induces partition on original graph.

Concluding Remarks

- Important problem
- Many applications
- Many interesting methods. Theory + Heuristic.
- Deep connections to geometry.

Generalization of bisection

- We may need to cut many edges to bisect, but by cutting very few we may get ¼ - ¾ split.
- May be useful to know such "bottlenecks"

 Even for bisection, it might be easier to get one piece at a time

c-balanced partitioning

- For a fixed c, remove as few edges as possible to get subgraphs of size cn, (1-c)n.
- If c=O(1), we can use repeatedly to achieve bisection. Example: c=0.1
 - After 1 application we have 0.1 0.9 split.
 - Apply once more on 0.9: 0.1, 0.09, 0.81
 - Apply log times on larger piece and extract n/2 vertices. Bisection!