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Overview

I Pin-hole camera

I Why projective geometry?

I Reconstruction
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Computer vision geometry: main problems

Correspondence problem: Match image projections of a 3D
configuration.

Reconstruction problem: Recover the structure of the 3D
configuration from image projections.

Re-projection problem: Is a novel view of a 3D configuration
consistent with other views? (Novel view generation)
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An infinitely strange perspective

I Parallel lines in 3D space converge in images.

I The line of the horizon is formed by ‘infinitely’ distant points
(vanishing points).

I Any pair of parallel lines meet at a point on the horizon
corresponding to their common direction.

I All ‘intersections at infinity’ stay constant as the observer
moves.
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3D reconstruction from pin-hole projections

La Flagellazione di Cristo (1460) Galleria Nazionale delle Marche
by Piero della Francesca (1416-1492) (Robotics Research Group,
Oxford University, 2000)
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Pin-hole camera

I The effects can be modelled mathematically using the ‘linear
perspective’ or a ‘pin-hole camera’ (realized first by Leonardo?)

I If the world coordinates of a point are (X ,Y ,Z ) and the
image coordinates are (x , y), then

x = fX/Z and y = fY /Z

I The model is non-linear.
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In terms of projective coordinates
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are homogeneous coordinates.

Subhashis Banerjee Projective geometry for Computer Vision



Euclidean and Affine geometries

I Given a coordinate system, n-dimensional real affine space is
the set of all points parameterized by x = (x1, . . . , xn)t ∈ Rn.

I An affine transformation is expressed as

x′ = Ax + b

where A is a n × n (usually) non-singular matrix and b is a
n × 1 vector representing a translation.

I By SVD

A = UΣVT = (UVT )(VΣVT ) = R(θ)R(−φ)ΣR(φ)

where where

Σ =

[
λ1 0
0 λ2

]
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Euclidean and Affine geometries

I In the special case of when A is a rotation (i.e.,
AAt = AtA = I, then the transformation is Euclidean.

I An affine transformation preserves parallelism and ratios of
lengths along parallel directions.

I An Euclidean transformation, in addition to the above, also
preserves lengths and angles.

I Since an affine (or Euclidean) transformation preserves
parallelism it cannot be used to describe a pinhole projection.
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Spherical geometry

I The space S2:

S2 =
{

x ∈ R3 : ||x || = 1
}

I lines in S2: Viewed as a set in R3 this is the intersection of
S2 with a plane through the origin. We will call this great
circle a line in S2. Let ξ be a unit vector. Then,
l =

{
x ∈ S2 : ξtx = 0

}
is the line with pole ξ.
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Spherical geometry

I Lines in S2 cannot be parallel. Any two lines intersect at a
pair of antipodal points.

I A point on a line:

l· x = 0 or lT x = 0 or xT l = 0

I Two points define a line:

l = p× q

I Two lines define a point:

x = l×m
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Projective geometry

I The projective plane P2 is the set of all pairs {x,−x} of
antipodal points in S2.

I Two alternative definitions of P2, equivalent to the preceding
one are

1. The set of all lines through the origin in R3.
2. The set of all equivalence classes of ordered triples (x1, x2, x3)

of numbers (i.e., vectors in R3) not all zero, where two vectors
are equivalent if they are proportional.
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Projective geometry

The space P2 can be thought of as the infinite plane tangent to
the space S2 and passing through the point (0, 0, 1)t .
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Projective geometry

I Let π : S2 → P2 be the mapping that sends x to {x,−x}.
The π is a two-to-one map of S2 onto P2.

I A line of P2 is a set of the form πl, where l is a line of S2.
Clearly, πx lies on πl if and only if ξtx = 0.

I Homogeneous coordinates: In general, points of real
n-dimensional projective space, Pn,
are represented by n + 1 component column vectors
(x1, . . . , xn, xn+1) ∈ Rn+1 such that at least one xi is non-zero
and (x1, . . . , xn, xn+1) and (λx1, . . . , λxn, λxn+1) represent the
same point of Pn for all λ 6= 0.

I (x1, . . . , xn, xn+1) is the homogeneous representation of a
projective point.
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Canonical injection of Rn into Pn

I Affine space Rn can be embedded in Pn by

(x1, . . . , xn)→ (x1, . . . , xn, 1)

I Affine points can be recovered from projective points with
xn+1 6= 0 by

(x1, . . . , xn) ∼ (
x1

xn+1
, . . . ,

xn

xn+1
, 1)→ (

x1

xn+1
, . . . ,

xn

xn+1
)

I A projective point with xn+1 = 0 corresponds to a point at
infinity.

I The ray (x1, . . . , xn, 0) can be viewed as an additional ideal
point as (x1, . . . , xn) recedes to infinity in a certain direction.
For example, in P2,

lim
T→0

(X/T ,Y /T , 1) = lim
T→0

(X ,Y ,T ) = (X ,Y , 0)
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Lines in P2

I A line equation in R2 is

a1x1 + a2x2 + a3 = 0

I Substituting by homogeneous coordinates xi = Xi/X3 we get
a homogeneous linear equation

(a1, a2, a3)· (X1,X2,X3) =
3∑

i=1

aiXi = 0, X ∈ P2

I A line in P2 is represented by a homogeneous 3-vector
(a1, a2, a3).

I A point on a line: a·X = 0 or aT X = 0 or XT a = 0

I Two points define a line: l = p× q

I Two lines define a point: x = l×m
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The line at infinity

I The line at infinity (l∞): is the line of equation X3 = 0.
Thus, the homogeneous representation of l∞ is (0, 0, 1).

I The line (u1, u2, u3) intersects l∞ at the point (−u2, u1, 0).

I Points on l∞ are directions of affine lines in the embedded
affine space (can be extended to higher dimensions).
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Conics in P2

A conic in affine space (inhomogeneous coordinates) is

ax2 + bxy + cy2 + dx + ey + f = 0

Homogenizing this by replacements x = X1/X3 and y = Y1/Y3, we
obtain

aX 2
1 + bX1X2 + cX 2

2 + dX1X3 + eX2X3 + fX 2
3 = 0

which can be written in matrix notation as XT CX = 0 where C is
symmetric and is the homogeneous representation of a conic.
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Conics in P2

I The line l tangent to a conic C at any point x is given by
l = Cx.

I xtCx = 0 =⇒ (C−1l)tC((C−1l) = ltC−1l = 0
(because C−t = C−1). This is the equation of the dual conic.
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Conics in P2

I The degenerate conic of rank 2 is defined by two line l and m
as

C = lmt + mlt

Points on line l satisfy ltx = 0 and are hence on the conic
because (xt l)(mtx) + (xtm)(ltx) = 0. (Similarly for m).
The dual conic xyt + yxt represents lines passing through x
and y.
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Projective basis

Projective basis: A projective basis for Pn is any set of n + 2
points no n + 1 of which are linearly dependent.

Canonical basis: 
1
0
...
0

 ,


0
1
...
0

 , . . .
︸ ︷︷ ︸

points at infinity along each axis


0
0
...
1

 ,
︸ ︷︷ ︸
origin


1
1
...
1


︸ ︷︷ ︸

unit point
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Projective basis

Change of basis: Let e1, e2, . . . , en+1, en+2 be the standard basis
and a1, a2, . . . , an+1, an+2 be any other basis. There
exists a non-singular transformation [T](n+1)×(n+1)

such that:

Tei = λiai,∀i = 1, 2. . . . , n + 2

T is unique up to a scale.
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Homography

The invertible transformation T : Pn → Pn is called a projective
transformation or collineation or homography or perspectivity
and is completely determined by n + 2 point correspondences.

I Preserves straight lines and cross ratios

I Given four collinear points A1, A2,A3 and A4, their cross
ratio is defined as

A1A3 A2A4

A1A4 A2A3

I If A4 is a point at infinity then the cross ratio is given as

A1A3

A2A3

I The cross ratio is independent of the choice of the projective
coordinate system.
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Homography
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Homography
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Projective mappings of lines

I If the points xi lie on the line l, we have lT xi = 0.

I Since, lT H−1Hxi = 0 the points Hxi all lie on the line H−T l.

I Hence, if points are transformed as x′i = Hxi , lines are
transformed as l′ = H−T l.
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Projective mappings of conics

I Note that a conic is represented (homogeneously) as

xT Cx = 0

I Under a point transformation x′ = Hx the conic becomes

xT Cx = x′
T

[H−1]T CH−1x′ = x′
T

H−T CH−1x′ = 0

I This is the quadratic form of x′T C′x′ with C′ = H−T CH−1.
This gives the transformation rule for a conic.
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The affine subgroup

In an affine space An an affine transformation defines a
correspondence X↔ X′ given by:

X′ = AX + b

where X, X′ and b are n-vectors, and A is an n × n matrix.
Clearly this is a subgroup of the projective group. Its projective
representation is

T =

[
C c

0T
n t33

]
where A = 1

t33
C and b = 1

t33
c.
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Affine transformations preserve the plane/line at infinity

[
A b
0t 1

] x1

x2

0

 =

 A

(
x1

x2

)
0


A general projective transformation moves points at infinity to
finite points.
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The Euclidean subgroup

I The absolute conic: The conic Ω∞ is intersection of the
quadric of equation:

n+1∑
i=1

x2
i = xn+1 = 0 with π∞

I In a metric frame π∞ = (0, 0, 0, 1)T , and points on Ω∞ satisfy

X 2
1 + X 2

2 + X 3
3

X4

}
= 0

I For directions on π∞ (with X4 = 0), the absolute conic Ω∞
can be expressed as

(X1,X2,X3)I(X1,X2,X3)T = 0

I The absolute conic, Ω∞, is fixed under a projective
transformation H if and only if H is an Euclidean
transformation.
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Affine calibration of a plane
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Affine calibration of a plane

If the imaged line at infinity is l = (l1, l2, l3)t , then provided l3 6= 0
a suitable projective transformation that maps l back to l∞ is

H =

 1 0 0
0 1 0
l1 l2 l3

HA
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Reconstruction

Camera recovery Metrology
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Surfaces of revolution
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Modeling of structured scenes
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A walkthrough
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