Projective geometry for Computer Vision

Subhashis Banerjee

Department of Computer Science and Engineering IIT Delhi

NIT, Rourkela March 27, 2010

æ

高 とう モン・ く ヨ と

- Pin-hole camera
- Why projective geometry?
- Reconstruction

● ▶ 《 三 ▶

- < ≣ →

æ

- Correspondence problem: Match image projections of a 3D configuration.
- Reconstruction problem: Recover the structure of the 3D configuration from image projections.
- Re-projection problem: Is a novel view of a 3D configuration consistent with other views? (Novel view generation)

An infinitely strange perspective

- Parallel lines in 3D space converge in images.
- The line of the horizon is formed by 'infinitely' distant points (vanishing points).
- Any pair of parallel lines meet at a point on the horizon corresponding to their common direction.
- All 'intersections at infinity' stay constant as the observer moves.

3D reconstruction from pin-hole projections

La Flagellazione di Cristo (1460) Galleria Nazionale delle Marche by Piero della Francesca (1416-1492) (Robotics Research Group, Oxford University, 2000)

The effects can be modelled mathematically using the 'linear perspective' or a 'pin-hole camera' (realized first by Leonardo?)

If the world coordinates of a point are (X, Y, Z) and the image coordinates are (x, y), then

$$x = fX/Z$$
 and $y = fY/Z$

The model is non-linear.

$$\lambda \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

where,

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \in \mathcal{P}^2 \text{ and } \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \in \mathcal{P}^3$$

are homogeneous coordinates.

< ≣⇒

3 ×

Э

Euclidean and Affine geometries

- Given a coordinate system, n-dimensional real affine space is the set of all points parameterized by x = (x₁,...,x_n)^t ∈ ℝⁿ.
- An affine transformation is expressed as

$$\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{b}$$

where **A** is a $n \times n$ (usually) non-singular matrix and **b** is a $n \times 1$ vector representing a translation.

► By SVD

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} = (\mathbf{U} \mathbf{V}^{\mathsf{T}}) (\mathbf{V} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}) = R(\theta) R(-\phi) \mathbf{\Sigma} R(\phi)$$

where where

$$\mathbf{\Sigma} = \begin{bmatrix} \lambda_1 & \mathbf{0} \\ \mathbf{0} & \lambda_2 \end{bmatrix}$$

- In the special case of when A is a rotation (i.e., AA^t = A^tA = I, then the transformation is Euclidean.
- An affine transformation preserves parallelism and ratios of lengths along parallel directions.
- An Euclidean transformation, in addition to the above, also preserves lengths and angles.
- Since an affine (or Euclidean) transformation preserves parallelism it cannot be used to describe a pinhole projection.

向下 イヨト イヨト

Spherical geometry

► The space S²:

$$\mathcal{S}^2 = \left\{ \mathbf{x} \in \mathbb{R}^3 : ||x|| = 1 \right\}$$

lines in S²: Viewed as a set in ℝ³ this is the intersection of S² with a plane through the origin. We will call this great circle a line in S². Let ξ be a unit vector. Then,
 I = {x ∈ S² : ξ^tx = 0} is the line with pole ξ.

- Lines in S² cannot be parallel. Any two lines intersect at a pair of antipodal points.
- A point on a line:

$$\mathbf{I} \cdot \mathbf{x} = 0$$
 or $\mathbf{I}^T \mathbf{x} = 0$ or $\mathbf{x}^T \mathbf{I} = 0$

Two points define a line:

$$\mathbf{I} = \mathbf{p} \times \mathbf{q}$$

Two lines define a point:

$$\mathbf{x} = \mathbf{I} \times \mathbf{m}$$

A B K A B K

- ► The projective plane P² is the set of all pairs {x, -x} of antipodal points in S².
- Two alternative definitions of P², equivalent to the preceding one are
 - 1. The set of all lines through the origin in \mathbb{R}^3 .
 - 2. The set of all equivalence classes of ordered triples (x_1, x_2, x_3) of numbers (i.e., vectors in \mathbb{R}^3) not all zero, where two vectors are equivalent if they are proportional.

向下 イヨト イヨト

The space \mathcal{P}^2 can be thought of as the infinite plane tangent to the space \mathcal{S}^2 and passing through the point $(0,0,1)^t$.

Projective geometry

- Let $\pi : S^2 \to P^2$ be the mapping that sends \mathbf{x} to $\{\mathbf{x}, -\mathbf{x}\}$. The π is a two-to-one map of S^2 onto P^2 .
- A line of P² is a set of the form πI, where I is a line of S². Clearly, πx lies on πI if and only if ξ^tx = 0.
- ▶ Homogeneous coordinates: In general, points of real *n*-dimensional **projective space**, \mathcal{P}^n , are represented by n + 1 component column vectors $(x_1, \ldots, x_n, x_{n+1}) \in \mathbb{R}^{n+1}$ such that at least one x_i is non-zero and $(x_1, \ldots, x_n, x_{n+1})$ and $(\lambda x_1, \ldots, \lambda x_n, \lambda x_{n+1})$ represent the same point of \mathcal{P}^n for all $\lambda \neq 0$.
- ► (x₁,..., x_n, x_{n+1}) is the homogeneous representation of a projective point.

3

・ロト ・回ト ・ヨト ・ヨト

Canonical injection of \mathbb{R}^n into \mathcal{P}^n

• Affine space \mathbb{R}^n can be embedded in \mathcal{P}^n by

$$(x_1,\ldots,x_n) \rightarrow (x_1,\ldots,x_n,1)$$

• Affine points can be recovered from projective points with $x_{n+1} \neq 0$ by

$$(x_1,\ldots,x_n)\sim (\frac{x_1}{x_{n+1}},\ldots,\frac{x_n}{x_{n+1}},1)\rightarrow (\frac{x_1}{x_{n+1}},\ldots,\frac{x_n}{x_{n+1}})$$

- ► A projective point with x_{n+1} = 0 corresponds to a **point at** infinity.
- ► The ray (x₁,...,x_n,0) can be viewed as an additional **ideal point** as (x₁,...,x_n) recedes to infinity in a certain direction. For example, in P²,

$$\lim_{T \to 0} (X/T, Y/T, 1) = \lim_{T \to 0} (X, Y, T) = (X, Y, 0)$$

• A line equation in \mathbb{R}^2 is

$$a_1x_1 + a_2x_2 + a_3 = 0$$

Substituting by homogeneous coordinates x_i = X_i/X₃ we get a homogeneous linear equation

$$(a_1, a_2, a_3) \cdot (X_1, X_2, X_3) = \sum_{i=1}^3 a_i X_i = 0, \; \mathbf{X} \in \mathcal{P}^2$$

- A line in P² is represented by a homogeneous 3-vector (a₁, a₂, a₃).
- A point on a line: $\mathbf{a} \cdot \mathbf{X} = 0$ or $\mathbf{a}^T \mathbf{X} = 0$ or $\mathbf{X}^T \mathbf{a} = 0$
- Two points define a line: I = p × q
- Two lines define a point: x = I × m

- ► The line at infinity (I_∞): is the line of equation X₃ = 0. Thus, the homogeneous representation of I_∞ is (0,0,1).
- The line (u_1, u_2, u_3) intersects I_{∞} at the point $(-u_2, u_1, 0)$.
- ▶ Points on I_∞ are directions of affine lines in the embedded affine space (can be extended to higher dimensions).

向下 イヨト イヨト

A conic in affine space (inhomogeneous coordinates) is

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

Homogenizing this by replacements $x = X_1/X_3$ and $y = Y_1/Y_3$, we obtain

$$aX_1^2 + bX_1X_2 + cX_2^2 + dX_1X_3 + eX_2X_3 + fX_3^2 = 0$$

which can be written in matrix notation as $\mathbf{X}^T \mathbf{C} \mathbf{X} = 0$ where C is symmetric and is the *homogeneous representation* of a **conic**.

Conics in \mathcal{P}^2

- ► The line I tangent to a conic C at any point x is given by I = Cx.
- ► $\mathbf{x}^t \mathbf{C} \mathbf{x} = 0 \implies (\mathbf{C}^{-1} \mathbf{I})^t \mathbf{C}((\mathbf{C}^{-1} \mathbf{I}) = \mathbf{I}^t \mathbf{C}^{-1} \mathbf{I} = 0$ (because $\mathbf{C}^{-t} = \mathbf{C}^{-1}$). This is the equation of the *dual conic*.

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

The degenerate conic of rank 2 is defined by two line I and m as

 $\mathbf{C} = \mathbf{Im}^t + \mathbf{mI}^t$

Points on line I satisfy $I^t x = 0$ and are hence on the conic because $(x^t I)(m^t x) + (x^t m)(I^t x) = 0$. (Similarly for m). The dual conic $xy^t + yx^t$ represents lines passing through x and y.

3

高 とう モン・ く ヨ と

Projective basis: A **projective basis** for \mathcal{P}^n is any set of n+2 points no n+1 of which are linearly dependent.

Canonical basis:

Change of basis: Let $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_{n+1}, \mathbf{e}_{n+2}$ be the standard basis and $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_{n+1}, \mathbf{a}_{n+2}$ be any other basis. There exists a non-singular transformation $[\mathbf{T}]_{(n+1)\times(n+1)}$ such that:

$$\mathbf{Te}_{\mathbf{i}} = \lambda_i \mathbf{a}_{\mathbf{i}}, \forall i = 1, 2, \dots, n+2$$

T is unique up to a scale.

æ

ゆ く き と く き と

Homography

The invertible transformation $\mathbf{T} : \mathcal{P}^n \to \mathcal{P}^n$ is called a **projective** transformation or collineation or homography or perspectivity and is completely determined by n + 2 point correspondences.

- Preserves straight lines and cross ratios
- ► Given four collinear points A₁, A₂, A₃ and A₄, their cross ratio is defined as _____

$$\frac{\overline{\mathbf{A}_1\mathbf{A}_3}}{\overline{\mathbf{A}_1\mathbf{A}_4}} \frac{\overline{\mathbf{A}_2\mathbf{A}_4}}{\overline{\mathbf{A}_2\mathbf{A}_3}}$$

▶ If A₄ is a point at infinity then the cross ratio is given as

$$\frac{\overline{\mathbf{A}_1\mathbf{A}_3}}{\overline{\mathbf{A}_2\mathbf{A}_3}}$$

The cross ratio is independent of the choice of the projective coordinate system.

Homography

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

Homography

æ

- If the points \mathbf{x}_i lie on the line I, we have $\mathbf{I}^T \mathbf{x}_i = 0$.
- Since, $\mathbf{I}^T \mathbf{H}^{-1} \mathbf{H} \mathbf{x}_i = 0$ the points $\mathbf{H} \mathbf{x}_i$ all lie on the line $\mathbf{H}^{-T} \mathbf{I}$.
- ► Hence, if points are transformed as x'_i = Hx_i, lines are transformed as I' = H^{-T}I.

ヨット イヨット イヨッ

Note that a conic is represented (homogeneously) as

 $\mathbf{x}^T \mathbf{C} \mathbf{x} = \mathbf{0}$

• Under a point transformation $\mathbf{x}' = \mathbf{H}\mathbf{x}$ the conic becomes

$$\mathbf{x}^{T}\mathbf{C}\mathbf{x} = \mathbf{x}^{T}[\mathbf{H}^{-1}]^{T}\mathbf{C}\mathbf{H}^{-1}\mathbf{x}^{T} = \mathbf{x}^{T}\mathbf{H}^{-T}\mathbf{C}\mathbf{H}^{-1}\mathbf{x}^{T} = 0$$

This is the quadratic form of x'^TC'x' with C' = H^{-T}CH⁻¹. This gives the transformation rule for a conic.

通 とう ほうとう ほうど

In an affine space \mathcal{A}^n an **affine transformation** defines a correspondence $\mathbf{X} \leftrightarrow \mathbf{X}'$ given by:

$$\mathbf{X}' = \mathbf{A}\mathbf{X} + \mathbf{b}$$

where **X**, **X**' and **b** are *n*-vectors, and **A** is an $n \times n$ matrix. Clearly this is a subgroup of the projective group. Its projective representation is

$$\mathbf{T} = \begin{bmatrix} \mathbf{C} & \mathbf{c} \\ \mathbf{0}_n^T & t_{33} \end{bmatrix}$$

where $\mathbf{A} = \frac{1}{t_{33}}\mathbf{C}$ and $\mathbf{b} = \frac{1}{t_{33}}\mathbf{c}$.

ヨット イヨット イヨッ

$$\left[\begin{array}{cc} \mathbf{A} & \mathbf{b} \\ \mathbf{0}^t & 1 \end{array}\right] \left(\begin{array}{c} x_1 \\ x_2 \\ 0 \end{array}\right) = \left(\begin{array}{c} \mathbf{A} \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \\ 0 \end{array}\right)$$

A general projective transformation moves points at infinity to finite points.

æ

< ∃ >

The Euclidean subgroup

The absolute conic: The conic Ω_∞ is intersection of the quadric of equation:

$$\sum_{i=1}^{n+1} x_i^2 = x_{n+1} = 0 \text{ with } \pi_\infty$$

- In a metric frame $\pi_{\infty} = (0, 0, 0, 1)^{T}$, and points on Ω_{∞} satisfy $\begin{cases}
 X_{1}^{2} + X_{2}^{2} + X_{3}^{3} \\
 X_{4}
 \end{cases} = 0$
- ► For directions on π_{∞} (with $X_4 = 0$), the absolute conic $\mathbf{\Omega}_{\infty}$ can be expressed as

$$(X_1, X_2, X_3)$$
I (X_1, X_2, X_3) ^T = 0

The absolute conic, Ω_∞, is fixed under a projective transformation H if and only if H is an Euclidean transformation.

Affine calibration of a plane

500

Э

If the imaged line at infinity is $I = (l_1, l_2, l_3)^t$, then provided $l_3 \neq 0$ a suitable projective transformation that maps I back to I_{∞} is

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ l_1 & l_2 & l_3 \end{bmatrix} \mathbf{H}_{\mathbf{A}}$$

3

向下 イヨト イヨト

Reconstruction

Surfaces of revolution

Modeling of structured scenes

< E

э

A walkthrough

* 臣

æ

< ∃→

æ

Subhashis Banerjee Projective geometry for Computer Vision