Projective geometry for Computer Vision

Subhashis Banerjee

Department of Computer Science and Engineering IIT Delhi

NIT, Rourkela

March 27, 2010

Overview

- Pin-hole camera
- Why projective geometry?
- Reconstruction

Computer vision geometry: main problems

Correspondence problem: Match image projections of a 3D configuration.
Reconstruction problem: Recover the structure of the 3D configuration from image projections.
Re-projection problem: Is a novel view of a 3D configuration consistent with other views? (Novel view generation)

An infinitely strange perspective

- Parallel lines in 3D space converge in images.
- The line of the horizon is formed by 'infinitely' distant points (vanishing points).
- Any pair of parallel lines meet at a point on the horizon corresponding to their common direction.
- All 'intersections at infinity' stay constant as the observer moves.

3D reconstruction from pin-hole projections

La Flagellazione di Cristo (1460) Galleria Nazionale delle Marche by Piero della Francesca (1416-1492) (Robotics Research Group, Oxford University, 2000)

Pin-hole camera

- The effects can be modelled mathematically using the 'linear perspective' or a 'pin-hole camera' (realized first by Leonardo?)

- If the world coordinates of a point are (X, Y, Z) and the image coordinates are (x, y), then

$$
x=f X / Z \text { and } y=f Y / Z
$$

- The model is non-linear.

In terms of projective coordinates

$$
\lambda\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

where,

$$
\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right] \in \mathcal{P}^{2} \text { and }\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right] \in \mathcal{P}^{3}
$$

are homogeneous coordinates.

Euclidean and Affine geometries

- Given a coordinate system, n-dimensional real affine space is the set of all points parameterized by $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{t} \in \mathbb{R}^{n}$.
- An affine transformation is expressed as

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}+\mathbf{b}
$$

where \mathbf{A} is a $n \times n$ (usually) non-singular matrix and \mathbf{b} is a $n \times 1$ vector representing a translation.

- By SVD

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\left(\mathbf{U} \mathbf{V}^{T}\right)\left(\mathbf{V} \boldsymbol{\Sigma} \mathbf{V}^{T}\right)=R(\theta) R(-\phi) \boldsymbol{\Sigma} R(\phi)
$$

where where

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

Euclidean and Affine geometries

- In the special case of when \mathbf{A} is a rotation (i.e., $\mathbf{A A}^{t}=\mathbf{A}^{t} \mathbf{A}=\mathbf{I}$, then the transformation is Euclidean.
- An affine transformation preserves parallelism and ratios of lengths along parallel directions.
- An Euclidean transformation, in addition to the above, also preserves lengths and angles.
- Since an affine (or Euclidean) transformation preserves parallelism it cannot be used to describe a pinhole projection.

Spherical geometry

- The space \mathcal{S}^{2} :

$$
\mathcal{S}^{2}=\left\{\mathbf{x} \in \mathbb{R}^{3}:\|x\|=1\right\}
$$

- lines in \mathcal{S}^{2} : Viewed as a set in \mathbb{R}^{3} this is the intersection of \mathcal{S}^{2} with a plane through the origin. We will call this great circle a line in \mathcal{S}^{2}. Let ξ be a unit vector. Then, $\mathbf{I}=\left\{\mathbf{x} \in \mathcal{S}^{2}: \xi^{t} \mathbf{x}=0\right\}$ is the line with pole ξ.

Spherical geometry

- Lines in \mathcal{S}^{2} cannot be parallel. Any two lines intersect at a pair of antipodal points.
- A point on a line:

$$
\mathbf{I} \cdot \mathbf{x}=0 \text { or } \mathbf{I}^{T} \mathbf{x}=0 \text { or } \mathbf{x}^{T} \mathbf{I}=0
$$

- Two points define a line:

$$
\mathbf{I}=\mathbf{p} \times \mathbf{q}
$$

- Two lines define a point:

$$
\mathbf{x}=\mathbf{I} \times \mathbf{m}
$$

Projective geometry

- The projective plane \mathcal{P}^{2} is the set of all pairs $\{\mathbf{x},-\mathbf{x}\}$ of antipodal points in \mathcal{S}^{2}.
- Two alternative definitions of \mathcal{P}^{2}, equivalent to the preceding one are

1. The set of all lines through the origin in \mathbb{R}^{3}.
2. The set of all equivalence classes of ordered triples $\left(x_{1}, x_{2}, x_{3}\right)$ of numbers (i.e., vectors in \mathbb{R}^{3}) not all zero, where two vectors are equivalent if they are proportional.

Projective geometry

The space \mathcal{P}^{2} can be thought of as the infinite plane tangent to the space \mathcal{S}^{2} and passing through the point $(0,0,1)^{t}$.

Projective geometry

- Let $\pi: \mathcal{S}^{2} \rightarrow \mathcal{P}^{2}$ be the mapping that sends \mathbf{x} to $\{\mathbf{x},-\mathbf{x}\}$. The π is a two-to-one map of \mathcal{S}^{2} onto \mathcal{P}^{2}.
- A line of \mathcal{P}^{2} is a set of the form $\pi \mathbf{I}$, where \mathbf{I} is a line of \mathcal{S}^{2}. Clearly, $\pi \mathbf{x}$ lies on $\pi \mathbf{I}$ if and only if $\xi^{t} \mathbf{x}=0$.
- Homogeneous coordinates: In general, points of real n-dimensional projective space, \mathcal{P}^{n}, are represented by $n+1$ component column vectors $\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \in \mathbb{R}^{n+1}$ such that at least one x_{i} is non-zero and $\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$ and $\left(\lambda x_{1}, \ldots, \lambda x_{n}, \lambda x_{n+1}\right)$ represent the same point of \mathcal{P}^{n} for all $\lambda \neq 0$.
- $\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$ is the homogeneous representation of a projective point.

Canonical injection of \mathbb{R}^{n} into \mathcal{P}^{n}

- Affine space \mathbb{R}^{n} can be embedded in \mathcal{P}^{n} by

$$
\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{1}, \ldots, x_{n}, 1\right)
$$

- Affine points can be recovered from projective points with $x_{n+1} \neq 0$ by

$$
\left(x_{1}, \ldots, x_{n}\right) \sim\left(\frac{x_{1}}{x_{n+1}}, \ldots, \frac{x_{n}}{x_{n+1}}, 1\right) \rightarrow\left(\frac{x_{1}}{x_{n+1}}, \ldots, \frac{x_{n}}{x_{n+1}}\right)
$$

- A projective point with $x_{n+1}=0$ corresponds to a point at infinity.
- The ray $\left(x_{1}, \ldots, x_{n}, 0\right)$ can be viewed as an additional ideal point as $\left(x_{1}, \ldots, x_{n}\right)$ recedes to infinity in a certain direction. For example, in \mathcal{P}^{2},

$$
\lim _{T \rightarrow 0}(X / T, Y / T, 1)=\lim _{T \rightarrow 0}(X, Y, T)=(X, Y, 0)
$$

Lines in \mathcal{P}^{2}

- A line equation in \mathbb{R}^{2} is

$$
a_{1} x_{1}+a_{2} x_{2}+a_{3}=0
$$

- Substituting by homogeneous coordinates $x_{i}=X_{i} / X_{3}$ we get a homogeneous linear equation

$$
\left(a_{1}, a_{2}, a_{3}\right) \cdot\left(X_{1}, X_{2}, X_{3}\right)=\sum_{i=1}^{3} a_{i} X_{i}=0, \mathbf{X} \in \mathcal{P}^{2}
$$

- A line in \mathcal{P}^{2} is represented by a homogeneous 3-vector $\left(a_{1}, a_{2}, a_{3}\right)$.
- A point on a line: $\mathbf{a} \cdot \mathbf{X}=0$ or $\mathbf{a}^{T} \mathbf{X}=0$ or $\mathbf{X}^{T} \mathbf{a}=0$
- Two points define a line: $\mathbf{I}=\mathbf{p} \times \mathbf{q}$
- Two lines define a point: $\mathbf{x}=\mathbf{I} \times \mathbf{m}$

The line at infinity

- The line at infinity $\left(\mathbf{I}_{\infty}\right)$: is the line of equation $X_{3}=0$. Thus, the homogeneous representation of \mathbf{I}_{∞} is $(0,0,1)$.
- The line $\left(u_{1}, u_{2}, u_{3}\right)$ intersects \mathbf{I}_{∞} at the point $\left(-u_{2}, u_{1}, 0\right)$.
- Points on \mathbf{I}_{∞} are directions of affine lines in the embedded affine space (can be extended to higher dimensions).

Conics in \mathcal{P}^{2}

A conic in affine space (inhomogeneous coordinates) is

$$
a x^{2}+b x y+c y^{2}+d x+e y+f=0
$$

Homogenizing this by replacements $x=X_{1} / X_{3}$ and $y=Y_{1} / Y_{3}$, we obtain

$$
a X_{1}^{2}+b X_{1} X_{2}+c X_{2}^{2}+d X_{1} X_{3}+e X_{2} X_{3}+f X_{3}^{2}=0
$$

which can be written in matrix notation as $\mathbf{X}^{T} \mathbf{C X}=0$ where C is symmetric and is the homogeneous representation of a conic.

Conics in \mathcal{P}^{2}

- The line \mathbf{I} tangent to a conic \mathbf{C} at any point \mathbf{x} is given by $\mathbf{I}=\mathbf{C x}$.
- $\mathbf{x}^{t} \mathbf{C} \mathbf{x}=0 \Longrightarrow\left(\mathbf{C}^{-1} \mathbf{I}\right)^{t} \mathbf{C}\left(\left(\mathbf{C}^{-1} \mathbf{I}\right)=\mathbf{I}^{t} \mathbf{C}^{-1} \mathbf{I}=0\right.$ (because $\mathbf{C}^{-t}=\mathbf{C}^{-1}$). This is the equation of the dual conic.

Conics in \mathcal{P}^{2}

- The degenerate conic of rank 2 is defined by two line \mathbf{I} and \mathbf{m} as

$$
\mathbf{C}=\mathbf{I m}^{t}+\mathbf{m} \mathbf{I}^{t}
$$

Points on line \mathbf{I} satisfy $\mathbf{I}^{t} \mathbf{x}=0$ and are hence on the conic because $\left(\mathbf{x}^{t} \mathbf{I}\right)\left(\mathbf{m}^{t} \mathbf{x}\right)+\left(\mathbf{x}^{t} \mathbf{m}\right)\left(\mathbf{I}^{t} \mathbf{x}\right)=0$. (Similarly for $\left.\mathbf{m}\right)$. The dual conic $\mathbf{x y}^{t}+\mathbf{y} \mathbf{x}^{t}$ represents lines passing through \mathbf{x} and \mathbf{y}.

Projective basis

Projective basis: A projective basis for \mathcal{P}^{n} is any set of $n+2$ points no $n+1$ of which are linearly dependent.
Canonical basis:

$$
\underbrace{\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \ldots}_{\text {points at infinity along each axis }} \underbrace{\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]}_{\text {origin }}, \underbrace{\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]}_{\text {unit point }}
$$

Projective basis

Change of basis: Let $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \ldots, \mathbf{e}_{\mathbf{n + 1}}, \mathbf{e}_{\mathbf{n}+\mathbf{2}}$ be the standard basis and $\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \ldots, \mathbf{a}_{\mathbf{n}+\mathbf{1}}, \mathbf{a}_{\mathbf{n}+\mathbf{2}}$ be any other basis. There exists a non-singular transformation $[\mathbf{T}]_{(n+1) \times(n+1)}$ such that:

$$
\mathbf{T e}_{\mathbf{i}}=\lambda_{i} \mathbf{a}_{\mathbf{i}}, \forall i=1,2 \ldots, n+2
$$

\mathbf{T} is unique up to a scale.

Homography

The invertible transformation $\mathbf{T}: \mathcal{P}^{n} \rightarrow \mathcal{P}^{n}$ is called a projective transformation or collineation or homography or perspectivity and is completely determined by $n+2$ point correspondences.

- Preserves straight lines and cross ratios
- Given four collinear points $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}$ and \mathbf{A}_{4}, their cross ratio is defined as

$$
\begin{aligned}
& \overline{\mathbf{A}_{1} \mathbf{A}_{3}} \overline{\mathbf{A}_{2} \mathbf{A}_{4}} \\
& \overline{\mathbf{A}_{1} \mathbf{A}_{4}} \overline{\mathbf{A}_{2} \mathbf{A}_{3}}
\end{aligned}
$$

- If \mathbf{A}_{4} is a point at infinity then the cross ratio is given as

$$
\begin{aligned}
& \overline{\mathbf{A}_{1} \mathbf{A}_{3}} \\
& \overline{\mathbf{A}_{2} \mathbf{A}_{3}}
\end{aligned}
$$

- The cross ratio is independent of the choice of the projective coordinate system.

Homography

Homography

Projective mappings of lines

- If the points \mathbf{x}_{i} lie on the line \mathbf{I}, we have $\mathbf{I}^{T} \mathbf{x}_{i}=0$.
- Since, $\mathbf{I}^{T} \mathbf{H}^{-1} \mathbf{H} \mathbf{x}_{i}=0$ the points $\mathbf{H} \mathbf{x}_{i}$ all lie on the line $\mathbf{H}^{-T} \mathbf{I}$.
- Hence, if points are transformed as $\mathbf{x}^{\prime}{ }_{i}=\mathbf{H} \mathbf{x}_{i}$, lines are transformed as $\mathbf{I}^{\prime}=\mathbf{H}^{-T} \mathbf{I}$.

Projective mappings of conics

- Note that a conic is represented (homogeneously) as

$$
\mathbf{x}^{T} \mathbf{C x}=0
$$

- Under a point transformation $\mathbf{x}^{\prime}=\mathbf{H} \mathbf{x}$ the conic becomes

$$
\mathbf{x}^{T} \mathbf{C} \mathbf{x}=\mathbf{x}^{\prime T}\left[\mathbf{H}^{-1}\right]^{T} \mathbf{C} \mathbf{H}^{-1} \mathbf{x}^{\prime}=\mathbf{x}^{\prime T} \mathbf{H}^{-T} \mathbf{C} \mathbf{H}^{-1} \mathbf{x}^{\prime}=0
$$

- This is the quadratic form of $\mathbf{x}^{T} \mathbf{C}^{\prime} \mathbf{x}^{\prime}$ with $\mathbf{C}^{\prime}=\mathbf{H}^{-T} \mathbf{C H}^{-1}$. This gives the transformation rule for a conic.

The affine subgroup

In an affine space \mathcal{A}^{n} an affine transformation defines a correspondence $\mathbf{X} \leftrightarrow \mathbf{X}^{\prime}$ given by:

$$
\mathbf{X}^{\prime}=\mathbf{A X}+\mathbf{b}
$$

where $\mathbf{X}, \mathbf{X}^{\prime}$ and \mathbf{b} are n-vectors, and \mathbf{A} is an $n \times n$ matrix. Clearly this is a subgroup of the projective group. Its projective representation is

$$
\mathbf{T}=\left[\begin{array}{cc}
\mathbf{C} & \mathbf{c} \\
\mathbf{0}_{n}^{T} & t_{33}
\end{array}\right]
$$

where $\mathbf{A}=\frac{1}{t_{33}} \mathbf{C}$ and $\mathbf{b}=\frac{1}{t_{33}} \mathbf{c}$.

Affine transformations preserve the plane/line at infinity

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathbf{b} \\
\mathbf{0}^{t} & 1
\end{array}\right]\left(\begin{array}{c}
x_{1} \\
x_{2} \\
0
\end{array}\right)=\binom{\mathbf{A}\binom{x_{1}}{x_{2}}}{0}
$$

A general projective transformation moves points at infinity to finite points.

The Euclidean subgroup

- The absolute conic: The conic Ω_{∞} is intersection of the quadric of equation:

$$
\sum_{i=1}^{n+1} x_{i}^{2}=x_{n+1}=0 \text { with } \pi_{\infty}
$$

- In a metric frame $\pi_{\infty}=(0,0,0,1)^{T}$, and points on Ω_{∞} satisfy

$$
\left.\begin{array}{r}
X_{1}^{2}+X_{2}^{2}+X_{3}^{3} \\
X_{4}
\end{array}\right\}=0
$$

- For directions on π_{∞} (with $X_{4}=0$), the absolute conic Ω_{∞} can be expressed as

$$
\left(X_{1}, X_{2}, X_{3}\right) \mathbf{l}\left(X_{1}, X_{2}, X_{3}\right)^{T}=0
$$

- The absolute conic, Ω_{∞}, is fixed under a projective transformation H if and only if H is an Euclidean transformation.

Affine calibration of a plane

Projective geometry for Computer Vision

Affine calibration of a plane

If the imaged line at infinity is $\mathbf{I}=\left(I_{1}, l_{2}, l_{3}\right)^{t}$, then provided $I_{3} \neq 0$ a suitable projective transformation that maps \mathbf{I} back to \mathbf{I}_{∞} is

$$
\mathbf{H}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
l_{1} & l_{2} & l_{3}
\end{array}\right] \mathbf{H}_{\mathbf{A}}
$$

Reconstruction

Camera recovery

Metrology

Surfaces of revolution

Modeling of structured scenes

A walkthrough

