Projective geometry for Computer Vision

Subhashis Banerjee

Department of Computer Science and Engineering
IIT Delhi

NIT, Rourkela
March 27, 2010
Overview

- Pin-hole camera
- Why projective geometry?
- Reconstruction
Correspondence problem: Match image projections of a 3D configuration.

Reconstruction problem: Recover the structure of the 3D configuration from image projections.

Re-projection problem: Is a novel view of a 3D configuration consistent with other views? (Novel view generation)
An infinitely strange perspective

- Parallel lines in 3D space converge in images.
- The line of the horizon is formed by ‘infinitely’ distant points (vanishing points).
- Any pair of parallel lines meet at a point on the horizon corresponding to their common direction.
- All ‘intersections at infinity’ stay constant as the observer moves.

Figure 1.1: Landscape with horizon
3D reconstruction from pin-hole projections

La Flagellazione di Cristo (1460) Galleria Nazionale delle Marche by Piero della Francesca (1416-1492) (Robotics Research Group, Oxford University, 2000)
The effects can be modelled mathematically using the ‘linear perspective’ or a ‘pin-hole camera’ (realized first by Leonardo?)

If the world coordinates of a point are \((X, Y, Z)\) and the image coordinates are \((x, y)\), then

\[x = \frac{fX}{Z} \quad \text{and} \quad y = \frac{fY}{Z} \]

The model is non-linear.
In terms of projective coordinates

\[\lambda \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \]

where, \(\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \in \mathcal{P}^2 \) and \(\begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \in \mathcal{P}^3 \) are **homogeneous coordinates**.
Euclidean and Affine geometries

- Given a coordinate system, n-dimensional real affine space is the set of all points parameterized by $\mathbf{x} = (x_1, \ldots, x_n)^t \in \mathbb{R}^n$.

- An affine transformation is expressed as

$$\mathbf{x}' = A\mathbf{x} + \mathbf{b}$$

where A is a $n \times n$ (usually) non-singular matrix and \mathbf{b} is a $n \times 1$ vector representing a translation.

- By SVD

$$A = U\Sigma V^T = (UV^T)(V\Sigma V^T) = R(\theta)R(-\phi)\Sigma R(\phi)$$

where

$$\Sigma = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$
Euclidean and Affine geometries

▶ In the special case of when A is a rotation (i.e., $AA^t = A^t A = I$), then the transformation is *Euclidean*.
▶ An affine transformation preserves parallelism and ratios of lengths along parallel directions.
▶ An Euclidean transformation, in addition to the above, also preserves lengths and angles.
▶ *Since an affine (or Euclidean) transformation preserves parallelism it cannot be used to describe a pinhole projection.*
Spherical geometry

The space S^2:

$$S^2 = \{ \mathbf{x} \in \mathbb{R}^3 : ||\mathbf{x}|| = 1 \}$$

lines in S^2: Viewed as a set in \mathbb{R}^3 this is the intersection of S^2 with a plane through the origin. We will call this great circle a line in S^2. Let ξ be a unit vector. Then, $l = \{ \mathbf{x} \in S^2 : \xi^t \mathbf{x} = 0 \}$ is the line with pole ξ.

\[\xi \]
Spherical geometry

- Lines in S^2 cannot be parallel. Any two lines intersect at a pair of antipodal points.

- A point on a line:
 \[\mathbf{l} \cdot \mathbf{x} = 0 \text{ or } \mathbf{l}^T \mathbf{x} = 0 \text{ or } \mathbf{x}^T \mathbf{l} = 0 \]

- Two points define a line:
 \[\mathbf{l} = \mathbf{p} \times \mathbf{q} \]

- Two lines define a point:
 \[\mathbf{x} = \mathbf{l} \times \mathbf{m} \]
The projective plane \mathcal{P}^2 is the set of all pairs $\{x, -x\}$ of antipodal points in S^2.

Two alternative definitions of \mathcal{P}^2, equivalent to the preceding one are

1. The set of all lines through the origin in \mathbb{R}^3.
2. The set of all equivalence classes of ordered triples (x_1, x_2, x_3) of numbers (i.e., vectors in \mathbb{R}^3) not all zero, where two vectors are equivalent if they are proportional.
The space \mathcal{P}^2 can be thought of as the infinite plane tangent to the space S^2 and passing through the point $(0, 0, 1)^t$.
Let $\pi : S^2 \rightarrow \mathcal{P}^2$ be the mapping that sends x to $\{x, -x\}$. The π is a two-to-one map of S^2 onto \mathcal{P}^2.

A line of \mathcal{P}^2 is a set of the form πl, where l is a line of S^2. Clearly, πx lies on πl if and only if $\xi^t x = 0$.

Homogeneous coordinates: In general, points of real n-dimensional **projective space**, \mathcal{P}^n, are represented by $n + 1$ component column vectors $(x_1, \ldots, x_n, x_{n+1}) \in \mathbb{R}^{n+1}$ such that at least one x_i is non-zero and $(x_1, \ldots, x_n, x_{n+1})$ and $(\lambda x_1, \ldots, \lambda x_n, \lambda x_{n+1})$ represent the same point of \mathcal{P}^n for all $\lambda \neq 0$.

$(x_1, \ldots, x_n, x_{n+1})$ is the homogeneous representation of a projective point.
Canonical injection of \mathbb{R}^n into \mathcal{P}^n

- Affine space \mathbb{R}^n can be embedded in \mathcal{P}^n by
 \[(x_1, \ldots, x_n) \rightarrow (x_1, \ldots, x_n, 1)\]

- Affine points can be recovered from projective points with $x_{n+1} \neq 0$ by
 \[(x_1, \ldots, x_n) \sim \left(\frac{x_1}{x_{n+1}}, \ldots, \frac{x_n}{x_{n+1}}, 1\right) \rightarrow \left(\frac{x_1}{x_{n+1}}, \ldots, \frac{x_n}{x_{n+1}}\right)\]

- A projective point with $x_{n+1} = 0$ corresponds to a point at infinity.

- The ray $(x_1, \ldots, x_n, 0)$ can be viewed as an additional ideal point as (x_1, \ldots, x_n) recedes to infinity in a certain direction. For example, in \mathcal{P}^2,
 \[
 \lim_{T \to 0} \left(\frac{X}{T}, \frac{Y}{T}, 1\right) = \lim_{T \to 0} (X, Y, T) = (X, Y, 0)
 \]
Lines in \mathcal{P}^2

- A line equation in \mathbb{R}^2 is
 \[a_1 x_1 + a_2 x_2 + a_3 = 0 \]

- Substituting by homogeneous coordinates $x_i = X_i/X_3$ we get a homogeneous linear equation
 \[(a_1, a_2, a_3) \cdot (X_1, X_2, X_3) = \sum_{i=1}^{3} a_i X_i = 0, \quad \mathbf{X} \in \mathcal{P}^2 \]

- A line in \mathcal{P}^2 is represented by a homogeneous 3-vector (a_1, a_2, a_3).
- A point on a line: $\mathbf{a} \cdot \mathbf{X} = 0$ or $\mathbf{a}^T \mathbf{X} = 0$ or $\mathbf{X}^T \mathbf{a} = 0$
- Two points define a line: $\mathbf{l} = \mathbf{p} \times \mathbf{q}$
- Two lines define a point: $\mathbf{x} = \mathbf{l} \times \mathbf{m}$
The line at infinity

- The line at infinity \((l_\infty)\): is the line of equation \(X_3 = 0\). Thus, the homogeneous representation of \(l_\infty\) is \((0, 0, 1)\).
- The line \((u_1, u_2, u_3)\) intersects \(l_\infty\) at the point \((-u_2, u_1, 0)\).
- Points on \(l_\infty\) are directions of affine lines in the embedded affine space (can be extended to higher dimensions).
Conics in \mathcal{P}^2

A **conic** in affine space (inhomogeneous coordinates) is

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

Homogenizing this by replacements $x = X_1/X_3$ and $y = Y_1/Y_3$, we obtain

$$aX_1^2 + bX_1X_2 + cX_2^2 + dX_1X_3 + eX_2X_3 + fX_3^2 = 0$$

which can be written in matrix notation as $\mathbf{X}^T \mathbf{C} \mathbf{X} = 0$ where \mathbf{C} is symmetric and is the **homogeneous representation** of a **conic**.
The line l tangent to a conic C at any point x is given by $l = Cx$.

$x^tCx = 0 \implies (C^{-1}l)^tC((C^{-1}l) = l^tC^{-1}l = 0$
(because $C^{-t} = C^{-1}$). This is the equation of the dual conic.
The degenerate conic of rank 2 is defined by two line l and m as
\[C = lm^t + ml^t \]
Points on line l satisfy $l^tx = 0$ and are hence on the conic because $(x^tl)(m^tx) + (x^tm)(l^tx) = 0$. (Similarly for m).
The dual conic $xy^t + yx^t$ represents lines passing through x and y.
Projective basis: A **projective basis** for \mathcal{P}^n is any set of $n + 2$ points no $n + 1$ of which are linearly dependent.

Canonical basis:

- Points at infinity along each axis:
 \[
 \begin{bmatrix}
 1 \\
 0 \\
 \vdots \\
 0
 \end{bmatrix}, \quad
 \begin{bmatrix}
 0 \\
 1 \\
 \vdots \\
 0
 \end{bmatrix}, \ldots
 \]

- Origin:
 \[
 \begin{bmatrix}
 0 \\
 0 \\
 \vdots \\
 1
 \end{bmatrix}
 \]

- Unit point:
 \[
 \begin{bmatrix}
 1 \\
 1 \\
 \vdots \\
 1
 \end{bmatrix}
 \]
Change of basis: Let $e_1, e_2, \ldots, e_{n+1}, e_{n+2}$ be the standard basis and $a_1, a_2, \ldots, a_{n+1}, a_{n+2}$ be any other basis. There exists a non-singular transformation $[T]_{(n+1) \times (n+1)}$ such that:

$$T e_i = \lambda_i a_i, \forall i = 1, 2, \ldots, n + 2$$

T is unique up to a scale.
Homography

The invertible transformation $T: \mathcal{P}^n \to \mathcal{P}^n$ is called a **projective transformation** or **collineation** or **homography** or **perspectivity** and is completely determined by $n + 2$ point correspondences.

- Preserves straight lines and cross ratios
- Given four collinear points A_1, A_2, A_3 and A_4, their **cross ratio** is defined as
 \[
 \frac{A_1A_3}{A_1A_4} \div \frac{A_2A_4}{A_2A_3}
 \]
- If A_4 is a point at infinity then the cross ratio is given as
 \[
 \frac{A_1A_3}{A_2A_3}
 \]
- The cross ratio is independent of the choice of the projective coordinate system.
Homography

Subhashis Banerjee Projective geometry for Computer Vision
Homography

Subhashis Banerjee

Projective geometry for Computer Vision
If the points x_i lie on the line l, we have $l^T x_i = 0$.

Since, $l^T H^{-1} H x_i = 0$ the points $H x_i$ all lie on the line $H^{-T} l$.

Hence, if points are transformed as $x'_i = H x_i$, lines are transformed as $l' = H^{-T} l$.

Subhashis Banerjee
Projective geometry for Computer Vision
Note that a conic is represented (homogeneously) as

\[x^T C x = 0 \]

Under a point transformation \(x' = Hx \) the conic becomes

\[x^T C x = x'^T [H^{-1}]^T C H^{-1} x' = x'^T H^{-T} C H^{-1} x' = 0 \]

This is the quadratic form of \(x'^T C' x' \) with \(C' = H^{-T} C H^{-1} \). This gives the transformation rule for a conic.
The affine subgroup

In an affine space \mathcal{A}^n an **affine transformation** defines a correspondence $\mathbf{X} \leftrightarrow \mathbf{X'}$ given by:

$$
\mathbf{X'} = \mathbf{A} \mathbf{X} + \mathbf{b}
$$

where \mathbf{X}, $\mathbf{X'}$ and \mathbf{b} are n-vectors, and \mathbf{A} is an $n \times n$ matrix. Clearly this is a subgroup of the projective group. Its projective representation is

$$
\mathbf{T} = \begin{bmatrix} \mathbf{C} & \mathbf{c} \\ \mathbf{0}_n^T & t_{33} \end{bmatrix}
$$

where $\mathbf{A} = \frac{1}{t_{33}} \mathbf{C}$ and $\mathbf{b} = \frac{1}{t_{33}} \mathbf{c}$.

Subhashis Banerjee
Projective geometry for Computer Vision
Affine transformations preserve the plane/line at infinity

\[
\begin{bmatrix}
A & b & 0^t \\
0 & 1 & 1
\end{bmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
0
\end{pmatrix}
=
\begin{pmatrix}
A \\
0
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
0
\end{pmatrix}
\]

A general projective transformation moves points at infinity to finite points.
The Euclidean subgroup

- The absolute conic: The conic Ω_∞ is intersection of the quadric of equation:

$$\sum_{i=1}^{n+1} x_i^2 = x_{n+1} = 0 \text{ with } \pi_\infty$$

- In a metric frame $\pi_\infty = (0, 0, 0, 1)^T$, and points on Ω_∞ satisfy

$$X_1^2 + X_2^2 + X_3^3 + X_4 = 0$$

- For directions on π_∞ (with $X_4 = 0$), the absolute conic Ω_∞ can be expressed as

$$(X_1, X_2, X_3)I(X_1, X_2, X_3)^T = 0$$

- The absolute conic, Ω_∞, is fixed under a projective transformation H if and only if H is an Euclidean transformation.
Affine calibration of a plane
Affine calibration of a plane

If the imaged line at infinity is \(l = (l_1, l_2, l_3)^t \), then provided \(l_3 \neq 0 \) a suitable projective transformation that maps \(l \) back to \(l_\infty \) is

\[
H = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
l_1 & l_2 & l_3
\end{bmatrix} H_A
\]
Reconstruction

Camera recovery

Metrology
Surfaces of revolution

Axis of Revolution

Silhouette

Tangent Plane

C
Modeling of structured scenes

Subhashis Banerjee

Projective geometry for Computer Vision
A walkthrough