Geometric data structures

Sudebkumar Prasant Pal,
Department of Computer Science and Engineering,
IIT Kharagpur, 721302.
email: spp@cse.iitkgp.ernet.in

January 27, 2010

Scope of the lecture

- Binary search trees and 2-D Range trees We consider 1-d and 2-d range queries for point sets.

Scope of the lecture

- Binary search trees and 2-D Range trees We consider 1-d and 2-d range queries for point sets.
- Range searching using Kd-Trees 2-d orthogonal range searching with range trees.

Scope of the lecture

- Binary search trees and 2-D Range trees We consider 1-d and 2-d range queries for point sets.
- Range searching using Kd-trees

2-d orthogonal range searching with range trees.

- Interval trees

Interval trees for reporting all intervals on a line containing a given query point on the line.

Scope of the lecture

- Binary search trees and 2-D Range trees We consider 1-d and 2-d range queries for point sets.
- Range searching using Kd-trees

2-d orthogonal range searching with range trees.

- Interval trees

Interval trees for reporting all intervals on a line containing a given query point on the line.

- Segment trees

For reporting all intervals in a line containing a given query point on the line.

Scope of the lecture

- Binary search trees and 2-D Range trees We consider 1-d and 2-d range queries for point sets.
- Range searching using Kd-Trees 2-d orthogonal range searching with range trees.
- Interval trees Interval trees for reporting all intervals on a line containing a given query point on the line.
- Segment trees

For reporting all intervals in a line containing a given query point on the line.

- Paradigm of Sweep algorithms

For reporting intersections of line segments, and for computihg visible regions.

1-Dimensional Range searching

- Problem: Given a set P of n points $\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ on the real line, report points of P that lie in the range $[a, b], a \leq b$.

1-dimensional Range searching

- Problem: Given a set P of n points $\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ on the real line, report points of P that lie in the range $[a, b], a \leq b$.
- Using binary search on an array we can answer such a query in $O(\log n+k)$ time where k is the number of points of P in $[a, b]$.

1-dimensional Range searching

- Problem: Given a set P of n points $\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ on the real line, report points of P that lie in the range $[a, b], a \leq b$.
- Using binary search on an array we can answer such a query in $O(\log n+k)$ time where k is the number of points of P in $[a, b]$.
- However, when we permit insertion or deletion of points, we cannot use an array answering queries so efficiently.

1-Dimensional Range searching

Search range [6,25] Report 7,13,20,22

- We use a binary leaf search tree where leaf nodes store the points on the line, sorted by x-coordinates.

1-Dimensional Range searching

Search range [6,25] Report 7,13,20,22

- We use a binary leaf search tree where leaf nodes store the points on the line, sorted by x-coordinates.
- Each internal node stores the x-coordinate of the rightmost point in its left subtree for guiding search.

2-dimensional Range Searching

- Problem: Given a set P of n points in the plane, report points inside a query rectangle Q whose sides are parallel to the axes.

2-dimensional Range Searching

- Problem: Given a set P of n points in the plane, report points inside a query rectangle Q whose sides are parallel to the axes.
- Here, the points inside R are 14,12 and 17 .

2-dimensional Range Searching

- Using two 1-d range queries, one along each axis, solves the 2-d range query.

2-dimensional Range Searching

- Using two 1-d range queries, one along each axis, solves the 2-d range query.
- The cost incurred may exceed the actual output size of the 2-d range query.

Range searching with Range trees and Kd-trees

- Given a set S of n points in the plane, we can construct a $2 d$-range tree in $O(n \log n)$ time and space, so that rectangle queries can be executed in $O\left(\log ^{2} n+k\right)$ time.

Range searching with Range Trees and Kd-trees

- Given a set S of n points in the plane, we can construct a $2 d$-range tree in $O(n \log n)$ time and space, so that rectangle queries can be executed in $O\left(\log ^{2} n+k\right)$ time.
- The query time can be improved to $O(\log n+k)$ using the technique of fractional cascading.

Range searching with Range Trees and Kd-trees

- Given a set S of n points in the plane, we can construct a 2d-range tree in $O(n \log n)$ time and space, so that rectangle queries can be executed in $O\left(\log ^{2} n+k\right)$ time.
- The query time can be improved to $O(\log n+k)$ using the technique of fractional cascading.
- Given a set S of n points in the plane, we can construct a Kd-tree in $O(n \log n)$ time and $O(n)$ space, so that rectangle queries can be executed in $O(\sqrt{n}+k)$ time. Here, the number of points in the query rectangle is k.

Range searching in the plane using range TREES

Given a 2-d rectangle query $[a, b] X[c, d]$, we can identify subtrees whose leaf nodes are in the range $[a, b]$ along the X-direction.

Only a subset of these leaf nodes lie in the range $[c, d]$ along the Y-direction.

Range searching in the plane using range TREES

$T_{\text {assoc (v) }}$ is a binary search tree on y-coordinates for points in the leaf nodes of the subtree tooted at v in the tree T.

The point p is duplicated in $T_{\text {assoc(v) }}$ for each v on the search path for p in tree T.

The total space requirement is therefore $O(n \log n)$.

Range searching in The Plane using Range

TREES

We perform 1-d range queries with the y-range $[c, d]$ in each of the subtrees adjacent to the left and right search paths within the x-range $[a, b]$ in the tree T.

Since the search path is $O(\log n)$ in size, and each y-range query requires $O(\log n)$ time, the total cost of searching is $O\left(\log ^{2} n\right)$. The reporting cost is $O(k)$ where k points lie in the query rectangle.

2-RANGE TREE SEARCHING

2-RANGE TREE SEARCHING

2-RANGE TREE SEARCHING

Partition by the median of X-Coordinates

Partition by the median of y-Coordinates

Partition by the median of X-Coordinates

Partition by the median of y-Coordinates

2-Dimensional Range searching using Kd-Trees

Description of the Kd-Tree

- The tree T is a perfectly height-balanced binary search tree with alternate layers of nodes spitting subsets of points in P using x - and y-coordinates, respectively as follows.

Description of the Kd-Tree

- The tree T is a perfectly height-balanced binary search tree with alternate layers of nodes spitting subsets of points in P using x - and y-coordinates, respectively as follows.
- The point r stored in the root vertex T splits the set S into two roughly equal sized sets L and R using the median x-cooordinate xmedian (S) of points in S, so that all points in $L(R)$ have abscissae less than or equal to (strictly greater than) xmedian(S).

Description of the Kd-Tree

- The tree T is a perfectly height-balanced binary search tree with alternate layers of nodes spitting subsets of points in P using x - and y-coordinates, respectively as follows.
- The point r stored in the root vertex T splits the set S into two roughly equal sized sets L and R using the median x-cooordinate xmedian (S) of points in S, so that all points in $L(R)$ have abscissae less than or equal to (strictly greater than) xmedian(S).
- The entire plane is called the region (r).

Answering rectangle queries

- A query rectangle Q may (i) overlap a region, (ii) completely contain a region, or (iii) completely miss a region.

Answering rectangle queries

- A query rectangle Q may (i) overlap a region, (ii) completely contain a region, or (iii) completely miss a region.
- If R contains the entire bounded region (p) of a point p defining a node N of T then report all points in region (p).

Answering rectangle queries

- A query rectangle Q may (i) overlap a region, (ii) completely contain a region, or (iii) completely miss a region.
- If R contains the entire bounded region (p) of a point p defining a node N of T then report all points in region(p).
- If R misses the region (p) then we do not treverse the subtree rooted at this node.

Answering Rectangle Queries

- A query rectangle Q may (i) overlap a region, (ii) completely contain a region, or (iii) completely miss a region.
- If R contains the entire bounded region (p) of a point p defining a node N of T then report all points in region(p).
- If R misses the region (p) then we do not treverse the subtree rooted at this node.
- If R overlaps region (p) then we check whether R also overlaps the two regions of the children of the node N.

2-dimensional Range Searching: Kd-trees

- The set $L(R)$ is split into two roughly equal sized subsets $L U$ and $L D(R U$ and $R D)$, using point $u(v)$ that has the median y-coordinate in the set $L(R)$, and including u in $L U(R U)$.

2-dimensional Range Searching: Kd-trees

- The set $L(R)$ is split into two roughly equal sized subsets $L U$ and $L D(R U$ and $R D)$, using point $u(v)$ that has the median y-coordinate in the set $L(R)$, and including u in $L U(R U)$.
- The entire halfplane containing set $L(R)$ is called the region $(u)($ region $(v))$.

Nodes traversed in the Kd-Tree

Nodes traversed in the Kd-Tree

Time complexity of output point Reporting

- Reporting points within R contributes to the output size k for the query.

Time complexity of output point reporting

- Reporting points within R contributes to the output size k for the query.
- No leaf level region in T has more than 2 points.

Time complexity of output point Reporting

- Reporting points within R contributes to the output size k for the query.
- No leaf level region in T has more than 2 points.
- So, the cost of inspecting points outside R but within the intersection of leaf level regions of T can be charged to the internal nodes traversed in T.

Time complexity of output point reporting

- Reporting points within R contributes to the output size k for the query.
- No leaf level region in T has more than 2 points.
- So, the cost of inspecting points outside R but within the intersection of leaf level regions of T can be charged to the internal nodes traversed in T.
- This cost is borne for all leaf level regions intersected by R.

Worst-case cost of traversal

- It is sufficient to determine the upper bound on the number of (internal) nodes whose regions are intersected by a single vertical (horizontal) line.

Worst-case cost of traversal

- It is sufficient to determine the upper bound on the number of (internal) nodes whose regions are intersected by a single vertical (horizontal) line.
- Any vertical line intersecting S can intersect either L or R but not both, but it can meet both $R U$ and $R D$ ($L U$ and $L D$).

Worst-case cost of traversal

- It is sufficient to determine the upper bound on the number of (internal) nodes whose regions are intersected by a single vertical (horizontal) line.
- Any vertical line intersecting S can intersect either L or R but not both, but it can meet both $R U$ and $R D$ ($L U$ and $L D$).
- Any horizontal line intersecting R can intersect either $R U$ or $R D$ but not both, but it can meet both children of $R U(R D)$.

Time complexity of Rectangle queries for Kd-Trees

- Therefore, the time complexity $T(n)$ for an n-vertex Kd -tree obeys the recurrence relation

$$
T(n)=2+2 T\left(\frac{n}{4}\right)
$$

$$
T(1)=1
$$

Time complexity of Rectangle queries for KD-Trees

- Therefore, the time complexity $T(n)$ for an n-vertex Kd -tree obeys the recurrence relation

$$
T(n)=2+2 T\left(\frac{n}{4}\right)
$$

$$
T(1)=1
$$

- The solution for $T(n)=O(\sqrt{(n)})$.

Time complexity of Rectangle queries for KD-Trees

- Therefore, the time complexity $T(n)$ for an n-vertex Kd-tree obeys the recurrence relation

$$
\begin{gathered}
T(n)=2+2 T\left(\frac{n}{4}\right) \\
T(1)=1
\end{gathered}
$$

- The solution for $T(n)=O(\sqrt{(n)})$.
- The total cost of reporting k points in R is therefore $O(\sqrt{(} n)+k)$.

More general queries

General Queries:

- Triangles can be used to simulate polygonal shapes with straight edges.

More general queries

General Queries:

- Triangles can be used to simulate polygonal shapes with straight edges.
- Circles cannot be simulated by triangles either.

Triangle queries

- Using $O\left(n^{2}\right)$ space and time for preprocessing, triangle queries can be reported in $\left.O\left(\log ^{2} n+k\right)\right)$ time, where k is the number of points inside the query triangle.

Goswami, Das and Nandy: Comput. Geom. Th. and Appl. 29 (2004) pp. 163-175.

Triangle queries

- Using $O\left(n^{2}\right)$ space and time for preprocessing, triangle queries can be reported in $O\left(\log ^{2} n+k\right)$) time, where k is the number of points inside the query triangle.
- For counting the number k of points inside a query triangle, worst-case optimal $O(\log n)$ time suffices.
Goswami, Das and Nandy: Comput. Geom. Th. and Appl. 29 (2004) pp. 163-175.

Finding intervals Containing A Query point

Simpler queries ask for reporting all intervals intersecting the vertical line $X=x_{\text {query }}$.
More difficult queries ask for reporting all intervals intersecting a vertical segment joining $\left(x_{\text {query }}^{\prime}, y\right)$ and $\left(x_{\text {query }}^{\prime}, y^{\prime}\right)$.

Computing the interval tree

The set M has intervals intersecting the vertical line $X=x_{\text {mid }}$, where $x_{\text {mid }}$ is the median of the x -coordinates of the $2 n$ endpoints.
The root node has intervals M sorted in two independent orders (i) by right end points (B-E-A), and (ii) left end points (A-E-B).

Answering queries using an interval tree

The set L and R have at most n endpoints each.
So they have at most $\frac{n}{2}$ intervals each.
Clearly, the cost of (recursively) building the interval tree is $O(n \log n)$.
The space required is linear.

Answering Queries using an interval Tree

For $x_{\text {query }}<x_{\text {mid }}$, we do not traverse subtree for subset R.
For $x_{\text {query }}^{\prime}>x_{\text {mid }}$, we do not traverse subtree for subset L.
Clearly, the cost of reporting the k intervals is $O(\log n+k)$.

The problem is to report all (horizontal) segments that cut across the query rectangle or include an entire (top/bottom) bounding edge.

Use an interval tree of all the horizontal segments and the right bounding edge of the query rectangle like X or X^{\prime}.
Use the rectangle query for vertical segment X and find points A, B and C in the rectangle with left edge at minus infinity. For X^{\prime}, report B, C and D, similarly.

Introducing the segment tree

For an interval which spans the entire range $\operatorname{inv}(v)$, we mark only internal node v in the segment tree, and not any descendant of v. We never mark any ancestor of a marked node.

Representing intervals in the segment tree

At each level, at most two internal nodes are marked for any given interval.

Along a root to leaf path an interval is stored only once.
The space requirement is therefore $O(n \log n)$.

Reporting intervals containing A given query POINT

- Search the path in the tree reaching the leaf for the given query point.

Reporting intervals containing A given query POINT

- Search the path in the tree reaching the leaf for the given query point.
- Report all intervals that appear stored on the search path.

Reporting intervals containing A Given query POINT

- Search the path in the tree reaching the leaf for the given query point.
- Report all intervals that appear stored on the search path.
- If k intervals contain the query point then the cost incurred is $O(\log n+k)$.

Halfplanar Range queries

Halfplanar Range queries

Halfplanar range queries using simulataneous BISECTORS

$T(n) \leq 3 T(n / 4)+c \log n$
OR
$T(n) \leq T(n / 2)+T(n / 4)+c \log n$

Halfplanar Range queries

- Using $O(n \log n)$ time for preprocessing, halfplanar range queries can be reported in $O\left(n^{0.695}+k\right)$ time, where k is the number of points inside the query triangle.

Edelsbrunner and WelzI: Info. Proc. Lett. 23 (1986) pp. 289-293.

Reporting segments intersections

Problem: Given a set S of n line segments in the plane, report all intersections between the segments.

- Check all pairs in $O\left(n^{2}\right)$ time.

Reporting segments intersections

Problem: Given a set S of n line segments in the plane, report all intersections between the segments.

- Check all pairs in $O\left(n^{2}\right)$ time.
- A vertical line just before any intersection meets intersecting segments in an empty, intersection free segment.

Reporting segments intersections

Problem: Given a set S of n line segments in the plane, report all intersections between the segments.

- Check all pairs in $O\left(n^{2}\right)$ time.
- A vertical line just before any intersection meets intersecting segments in an empty, intersection free segment.
- Detect intersections by checking consecutive pairs of segments along a vertical line.

Reporting segments intersections

Problem: Given a set S of n line segments in the plane, report all intersections between the segments.

- Check all pairs in $O\left(n^{2}\right)$ time.
- A vertical line just before any intersection meets intersecting segments in an empty, intersection free segment.
- Detect intersections by checking consecutive pairs of segments along a vertical line.
- This way, each intersection point can be detected.

Sweeping steps: Endpoints and intersection POINTS

SQ,SR,DC,1-->SQ,SR,DE,2-->DE,3--
FG,FE,DE,4-->NP,NO,FG,FE,DE,5-->
NP,NO,FG,FE,DE,6-->LM,MK,NP,NO,FG,7

SQ,SR,DC,1-->SQ,SR,DE,2-->DE,2
FG,FE,DE,4-->NP,NO,FG,FE,DE,5--> NP,NO,FG,FE,DE,6-->LM,MK,NP,NO,FG,7

SQ,SR,DC,1-->SQ,SR,DE,2-->DE,2
FG,FE,DE,4-->NP,NO,FG,FE,DE,5--> NP,NO,FG,FE,DE,6-->LM,MK,NP,NO,FG,7

SQ,SR,DC,1-->SQ,SR,DE,2-->DE,2
FG,FE,DE,4-->NP,NO,FG,FE,DE,5--> NP,NO,FG,FE,DE,6-->LM,MK,NP,NO,FG,7

SQ,SR,DC,1-->SQ,SR,DE,2-->DE,2
FG,FE,DE,4-->NP,NO,FG,FE,DE,5--> NP,NO,FG,FE,DE,6-->LM,MK,NP,NO,FG,7

SQ,SR,DC,1-->SQ,SR,DE,2-->DE,3--
FG,FE,DE,4-->NP,NO,FG,FE,DE,5-->
NP,NO,FG,FE,DE,6-->LM,MK,NP,NO,FG,7

(1. Mark de Berg, Otfried Schwarzkopf, Marc van Kreveld and Mark Overmars, Computational Geometry: Algorithms and Applications, Springer.

围 S. K. Ghosh, Visibility Algorithms in the Plane, Cambridge University Press, Cambridge, UK, 2007.
R. F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, New York, NY, Springer-Verlag, 1985.

