Sketching Streams

Sumit Ganguly

IIT Kanpur

Data Stream Model

Stream is a sequence of records

- Arrives fast, continuously.
- Not enough main memory to store stream.
- Too fast to store on secondary storage with random access. May be stored as a log file for later mining.

Example Applications

- Network switch data (Distr. Denial of Service brewing?)
- Sensor networks (intrusion?)
- Satellite data (storm? flashflood?)
- Others: web-usage, financial market, etc.

Data Stream Processing Model

- Low space data structure: Sub-linear/ poly-logarithmic in stream size.
- Process each arriving record efficiently to match fast arrival speeds.
- Online Processing: input record is processed as it arrives.
- Streaming Model: Online, sub-linear space and time processing.
- Other Models: not in this talk.
- Semi-Streaming: Stores data in sequential order. Multiple passes are allowed.

This talk

Some algorithmic techniques have evolved for data stream processing. We will see some important ones:

Linear Sketching, Dimensionality Reduction.

Not in this talk

Sampling from Data Streams：Not covered

Data Stream Model

- Domain of items $[n]=\{1,2, \ldots, n\}$.
- n is known but very large : IP-addresses, pairs of IP-addresses- 2^{64}.
- Insert-Delete Streams: Sequence of updates (item, change in frequency) $\equiv(i, v)$.
$(1,1)(4,1)(5,3)(7,1)(5,-1)(5,2)(7,2)(6,1)(1,-1) \ldots$

Frequency Vector

Frequency Vector of Stream

$$
(1,1)(4,1)(5,3)(7,1)(5,-1)(5,2)(7,2)(6,1)(1,-1) \ldots
$$

Frequency Vector

Incremental view:

1. Initially $f=0$.
2. When (i, v) arrives:

$$
f_{i}:=f_{i}+v
$$

Global view:

$$
f_{i}=\sum_{(i, v) \in \text { stream }} v, \quad i \in[n] .
$$

Data Streaming: Algorithmic Model

- Single pass over stream (Online algorithm).
- Sublinear storage: $n^{\alpha}(\alpha<1)$ or, better poly-logarithmic in n.
- Units of storage: bits.
- Fast processing per arriving stream record.
- Approximate processing (almost always necessary).
- Randomized computation (almost always necessary).

Independence in Probability: Revisited

- Independence: Random variables $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ are independent if their joint probability (density) function is the product of individual probability (density) function.
- Computational Problems:
- Design $h:[n] \rightarrow\{0,1\}$ so that $\{h(1), \ldots, h(n)\}$ are independent. All constructions require $\Omega(n)$ random bits.
- High randomness and storage.
- Algorithms may not always require full independence.
- Approximate independence often suffices.

Limited Independence

$\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ are k-wise independent if the joint distribution of any k variables is the product of their individual distributions.

$$
\begin{aligned}
\operatorname{Pr}\left\{X_{i_{1}}=\right. & \left.a_{1} \wedge X_{i_{2}}=a_{2} \wedge \ldots \wedge X_{i_{k}}=a_{k}\right\} \\
& =\operatorname{Pr}\left\{X_{i_{1}}=a_{1}\right\} \operatorname{Pr}\left\{X_{i_{2}}=a_{2}\right\} \ldots \operatorname{Pr}\left\{X_{i_{k}}=a_{k}\right\} .
\end{aligned}
$$

for any k distinct indices $1 \leq i_{1}, i_{2}, \ldots, i_{k} \leq n$ and $a_{1} \in \operatorname{support}\left(X_{i_{1}}\right), \ldots, a_{k} \in \operatorname{support}\left(X_{i_{k}}\right)$.

- Product of expectation of any k distinct variables is the product of individual expectations.
- k-wise independence implies k - 1 -wise indep.

k-wise independent hash functions

[Wegman Carter JCSS 81]

- \mathcal{H} is a finite family of functions mapping $[n] \rightarrow[m]$.
- Pick random member $h \in \mathcal{H}$ with prob. $1 /|\mathcal{H}|$.
- \mathcal{H} is k-wise independent if $\left\{h\left(x_{1}\right), \ldots, h\left(x_{n}\right)\right\}$ are k-wise independent.
- Equivalently, for distinct $x_{1}, x_{2}, \ldots, x_{k} \in[n]$ and $b_{1}, \ldots, b_{k} \in[m]$ not necessarily distinct,

$$
\begin{gathered}
\operatorname{Pr}_{h \in \mathcal{H}}\left\{\left(h\left(x_{1}\right)=b_{1}\right) \wedge\left(h\left(x_{2}\right)=b_{2}\right) \ldots \wedge\left(h\left(x_{k}\right)=b_{k}\right)\right\} \\
=
\end{gathered}
$$

$$
\operatorname{Pr}_{h \in \mathcal{H}}\left\{h\left(x_{1}\right)=b_{1}\right\} \cdot \operatorname{Pr}_{h \in \mathcal{H}}\left\{h\left(x_{2}=b_{2}\right)\right\} \cdots \times \operatorname{Pr}_{h \in \mathcal{H}}\left\{h\left(x_{k}\right)=b_{k}\right\} .
$$

Hash Family: Degree $k-1$ polynomials

- \mathbb{F} is a finite field of size at least n.
- \mathcal{H}_{k} : set of all k-tuples from \mathbb{F}. So $\left|\mathcal{H}_{k}\right|=|\mathbb{F}|^{k}$.
- Interpret a k-tuple $\left(a_{0}, \ldots, a_{k-1}\right)$ as a degree $k-1$ polynomial $p(x)$ over \mathbb{F} :

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{k-1} x^{k-1}
$$

- The family \mathcal{H}_{k} is k-wise independent.

Space and Randomness

- $\left|\mathcal{H}_{k}\right|=|\mathbb{F}|^{k}$.
- Requires $k \log |\mathbb{F}|$ bits to store a polynomial from \mathcal{H}_{k}.
- Randomness required: choose a_{0}, \ldots, a_{k} at random- $k \log |\mathbb{F}|$ random bits.
- $h(\cdot)$ can be computed in time $O(k)$ field operations $(+, \cdot)$.
- Special Case. \mathcal{H}_{2} : space of affine functions over \mathbb{F}

$$
h(x)=a_{0}+a_{1} x, \quad a_{0}, a_{1} \in F
$$

Pair-wise independence.
"Pair-wise independence and Derandomization", Luby and Wigderson (web)

Frequency Moment Estimation

- Frequency moment defined as

$$
F_{p}=\sum_{i \in[n]}\left|f_{i}\right|^{k}
$$

$p \in \mathbb{R}$ and non-negative.

- The problem of estimating frequency moments has played an important role in data stream computations.
- F_{0} is the number of distinct elements in the stream

$$
F_{0}=\sum_{i \in[n]}\left|f_{i}\right|^{0}=\left|\left\{i: f_{i} \neq 0\right\}\right|
$$

F_{2} Estimation Problem

[Alon Matias Szegedy: STOC'96, JCSS '98.]

- Deterministically estimating F_{2} to within $1 \pm 1 / 16$ requires $\Omega(n)$ space.
- Modified problem: Given ϵ and δ, design an algorithm that returns \hat{F}_{2} satisfying

$$
\left|\hat{F}_{2}-F_{2}\right| \leq \epsilon F_{2} \text { with prob. } 1-\delta .
$$

Linear Sketch

- Let $\xi:[n] \rightarrow\{-1,+1\}$
- $\xi(\cdot)$ four-wise independent hash function.
- Maps to ± 1 with equal probability.
- Implementation: Choose h at random from the family of cubic polynomials over $\mathbb{F}_{2^{r}}$, where, $n \leq 2^{r}<2 n$.

$$
\xi(u)= \begin{cases}1 & \text { if last bit of } h(u)=1 \\ -1 & \text { otherwise }\end{cases}
$$

- A sketch is a linear combination

$$
X=\sum_{i=1}^{n} f_{i} \xi(i)
$$

- Updating sketch in presence of stream updates:
$\operatorname{UPDATESKETCH}(i, v): \quad X:=X+v \cdot \xi(i)$.

Sketches

Sketch: $\sum_{i} f_{i} \xi(i), \xi:[n] \rightarrow\{-1,+1\}$ four wise independent.

$$
\mathbb{E}[\xi(i)]=(-1) \frac{1}{2}+(1) \frac{1}{2}=0
$$

We now calculate $\mathbb{E}\left[X^{2}\right]$.

$$
\begin{aligned}
\mathbb{E}\left[X^{2}\right] & =\mathbb{E}\left[\left(\sum_{i=1}^{n} f_{i} \xi(i)\right)^{2}\right] \\
& =\mathbb{E}\left[\sum_{i=1}^{n} f_{i}^{2}(\xi(i))^{2}+2 \sum_{1 \leq i<j \leq n} f_{i} f_{j} \xi(i) \xi(j)\right] \\
& =\sum_{i=1}^{n} f_{i}^{2} \mathbb{E}\left[(\xi(i))^{2}\right]+2 \sum_{1 \leq i<j \leq n} f_{i} f_{j} \mathbb{E}[\xi(i) \xi(j)]
\end{aligned}
$$

using linearity of expectation.

Sketch: Expectation

- We have shown that

$$
\mathbb{E}\left[X^{2}\right]=\sum_{i=1}^{n} f_{i}^{2} \mathbb{E}\left[(\xi(i))^{2}\right]+2 \sum_{1 \leq i<j \leq n} f_{i} f_{j} \mathbb{E}[\xi(i) \xi(j)]
$$

- Now, $(\xi(i))^{2}=1$, and by pair-wise independence, if $i \neq j$,

$$
\mathbb{E}[\xi(i) \xi(j)]=\mathbb{E}[\xi(i)] \mathbb{E}[\xi(j)]=0 \cdot 0=0
$$

- Therefore, we get an unbiased estimator.

$$
\mathbb{E}\left[X^{2}\right]=\sum_{i=1}^{n} f_{i}^{2}=F_{2}
$$

Sketch:Variance

$$
\begin{aligned}
\mathbb{E}\left[X^{4}\right] & =\mathbb{E}\left[\left(\sum_{i=1}^{n} f_{i} \xi(i)\right)^{4}\right] \\
& =\mathbb{E}\left[\sum_{i=1}^{n} f_{i} \xi(i) \sum_{j=1}^{n} f_{j} \xi(j) \sum_{k=1}^{n} f_{k} \xi(k) \sum_{l=1}^{n} f_{i} \xi(l)\right]
\end{aligned}
$$

Expanding

$$
\begin{aligned}
\mathbb{E}\left[X^{4}\right]=\mathbb{E} & {\left[\sum_{i=1}^{n} f_{i}^{4} \xi(i)^{4}+\sum_{i \neq j} 4 f_{i}^{3} f_{j}(\xi(i))^{3} \xi(j)\right.} \\
& +\sum_{i, j \text { distinct }} 6 f_{i}^{2} f_{j}^{2} \xi(i)^{2} \xi(j)^{2}+\sum_{i, j, k \text { distinct }} 12 f_{i}^{2} f_{j} f_{k} \xi(i)^{2} \xi(j) \xi(k) \\
& \left.+\sum_{i, j, k, l \text { distinct }} 4!f_{i} f_{j} f_{k} f_{l} \xi(i) \xi(j) \xi(k) \xi(I)\right]
\end{aligned}
$$

Sketch: Variance

Using linearity of expectation

$$
\begin{aligned}
\mathbb{E}\left[X^{4}\right]= & \sum_{i=1}^{n} f_{i}^{4} \mathbb{E}\left[\xi(i)^{4}\right]+\sum_{i \neq j} 4 f_{i}^{3} f_{j} \mathbb{E}\left[(\xi(i))^{3} \xi(j)\right] \\
& +\sum_{i, j \text { distinct }} 6 f_{i}^{2} f_{j}^{2} \mathbb{E}\left[\xi(i)^{2} \xi(j)^{2}\right]+\sum_{i, j, k \text { distinct }} 12 f_{i}^{2} f_{j} f_{k} \mathbb{E}\left[\xi(i)^{2} \xi(j) \xi(k)\right] \\
& +\sum_{i, j, k, l \text { distinct }} 4!f_{i} f_{j} f_{k} f_{i} \mathbb{E}[\xi(i) \xi(j) \xi(k) \xi(I)]
\end{aligned}
$$

$\xi(j)$'s are 4-wise independent. So expectation of pair-wise, three-wise or four-wise products of $\xi(j)$'s are the product of the corresponding expectations.

Sketch: Variance

Using linearity of expectation

$$
\begin{aligned}
\mathbb{E}\left[X^{4}\right]= & \sum_{i=1}^{n} f_{i}^{4} \mathbb{E}\left[\xi(i)^{4}\right]+\sum_{i \neq j} 4 f_{i}^{3} f_{j} \mathbb{E}\left[(\xi(i))^{3} \xi(j)\right] \\
& +\sum_{i, j \text { distinct }} 6 f_{i}^{2} f_{j}^{2} \mathbb{E}\left[\xi(i)^{2} \xi(j)^{2}\right]+\sum_{i, j, k \text { distinct }} 12 f_{i}^{2} f_{j} f_{k} \mathbb{E}\left[\xi(i)^{2} \xi(j) \xi(k)\right] \\
& +\sum_{i, j, k, l \text { distinct }} 4!f_{i} f_{j} f_{k} f_{I} \mathbb{E}[\xi(i) \xi(j) \xi(k) \xi(I)]
\end{aligned}
$$

$\xi(j)$'s are 4-wise independent. So expectation of pair-wise, three-wise or four-wise products of $\xi(j)$'s are the product of the corresponding expectations. So, for $\{i, j, k, I\}$ distinct

$$
\begin{aligned}
\xi(i)^{2} & =\xi(i)^{4}=1 \\
\mathbb{E}\left[\xi(i)^{3} \xi(j)\right] & =\mathbb{E}[\xi(i) \xi(j)]=\mathbb{E}[\xi(i)] \mathbb{E}[\xi(j)]=0 \cdot 0=0 \\
\mathbb{E}\left[\xi(i)^{2} \xi(j) \xi(k)\right] & =\mathbb{E}[\xi(j) \xi(k)]=0 \\
\mathbb{E}[\xi(i) \xi(j) \xi(k) \xi(l)] & =\mathbb{E}[\xi(i)] \mathbb{E}[\xi(j)] \mathbb{E}[\xi(k)] \mathbb{E}[\xi(I)]=0 \cdot 0 \cdot 0 \cdot 0=0 .
\end{aligned}
$$

Sketches: Variance contd.

From Last Slide

$$
\begin{aligned}
\mathbb{E}\left[X^{4}\right]= & \sum_{i=1}^{n} f_{i}^{4} \mathbb{E}\left[\xi(i)^{4}\right]+\sum_{i, j \text { distinct }} 4 f_{i}^{3} f_{j} \mathbb{E}\left[(\xi(i))^{3} \xi(j)\right] \\
& +\sum_{i \neq j} 6 f_{i}^{2} f_{j}^{2} \mathbb{E}\left[\xi(i)^{2} \xi(j)^{2}\right]+\sum_{i, j, k \text { distinct }} 12 f_{i}^{2} f_{j} f_{k} \mathbb{E}\left[\xi(i)^{2} \xi(j) \xi(k)\right] \\
& +\sum_{i, j, k, l \text { distinct }} 4!f_{i} f_{j} f_{k} f_{l} \mathbb{E}[\xi(i) \xi(j) \xi(k) \xi(l)]
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}\left[X^{4}\right] & =\sum_{i=1}^{n} f_{i}^{4}+\sum_{i, j \text { distinct }} 6 f_{i}^{2} f_{j}^{2} \leq 3\left(\sum_{i=1}^{n} f_{i}^{2}\right)^{2} \\
& \leq 3 F_{2}^{2}
\end{aligned}
$$

Designing estimator for F_{2}

AMS Sketch: $X=\sum_{i \in[n]} f_{i} \xi(i), \quad \xi:[n] \rightarrow\{1,-1\} 4$-wise indep. .

$$
\begin{gathered}
\mathbb{E}\left[X^{2}\right]=F_{2} . \\
\operatorname{Var}\left[X^{2}\right]=\mathbb{E}\left[X^{4}\right]-(\mathbb{E}[X])^{2} \leq 3 F_{2}^{2}-F_{2}^{2}=2 F_{2}^{2}
\end{gathered}
$$

- We can use Chebychev's inequality (Recall)

$$
\operatorname{Pr}\{|Y-\mathbb{E}[Y]|>t\}<\frac{\operatorname{Var}[Y]}{t^{2}} .
$$

for any real valued variable Y.

Designing estimator for F_{2} contd.

- Need a random variable Y with expectation F_{2} and variance at most $\epsilon^{2} F_{2}^{2} / 8$.
- Why? Then, by Chebychev's inequality, we would have,

$$
\operatorname{Pr}\left\{\left|Y-F_{2}\right|>\epsilon F_{2}\right\} \leq \frac{\operatorname{Var}[Y]}{\epsilon^{2} F_{2}^{2}} \leq \frac{1}{8}
$$

- Keep t independent sketches $X_{1}, X_{2}, \ldots X_{t}$. Return averages of squares: $Y=\left(X_{1}^{2}+\ldots+X_{t}^{2}\right) / t$.
- Taking average preserves expectation, by linearity of expectation and X_{i}^{2} are i.d. So $\mathbb{E}[Y]=\mathbb{E}\left[X_{1}^{2}\right]=F_{2}$.
- Since, X_{i}^{2} 's are independent, variance of their sum is the sum of their variances. So,

$$
\operatorname{Var}[Y]=\frac{1}{t^{2}} t \operatorname{Var}\left[X_{1}^{2}\right]=2 F_{2}^{2} / t
$$

Estimator for F_{2}

- Let $t=16 / \epsilon^{2}$. Then $\mathbb{E}[Y]=F_{2}$ and

$$
\operatorname{Var}[Y] \leq \epsilon^{2} F_{2}^{2} / 8
$$

- Therefore, by Chebychev's inequality

$$
\operatorname{Pr}\left\{\left|Y-F_{2}\right| \leq \epsilon F_{2}\right\} \geq \frac{7}{8}
$$

- We now use a standard argument for boosting confidence.

Boosting confidence from constant $>1 / 2$ to $1-\delta$

- Let A be a randomized algorithm.
- On input I, correct value is $Y(I)$.
- Suppose A on input I returns (random) numeric value $\hat{Y}(I)$. and the following guarantee:

$$
\operatorname{Pr}\{|\hat{Y}(I)-Y(I)|<\epsilon Y(I)\} \geq \frac{7}{8}
$$

- To boost confidence to $1-\delta$, run A independently on I $s=O\left(\log \frac{1}{\delta}\right)$ times to obtain

$$
\hat{Y}_{1}(I), \ldots, \hat{Y}_{s}(I)
$$

- Now return

$$
\operatorname{med}\left\{\hat{Y}_{1}(I), \ldots, \hat{Y}_{s}(I)\right\}
$$

Boosting using Median: Analysis

- $X_{i}=0$ if the j th run of A gives a "good answer" and is 1 otherwise.

$$
\begin{gathered}
X_{j}= \begin{cases}0 & \text { if }\left|\hat{Y}_{j}(I)-Y(I)\right|<\epsilon Y(I) \\
1 & \text { otherwise. }\end{cases} \\
\operatorname{Pr}\left\{X_{j}=1\right\} \leq \frac{1}{8}
\end{gathered}
$$

- Let $X=X_{1}+X_{2}+\ldots+X_{s}$: count number of "bad" answers.
- $\mathbb{E}[X] \leq s / 8$.
- The event $\left|\operatorname{med}\left(\hat{Y}_{1}(I), \ldots, \hat{Y}_{k}(I)\right)-Y(I)\right|>\epsilon Y(I)$ implies

$$
x \geq \frac{s}{2}
$$

Boosting with median: Analysis

Chernoff's bound

Let X_{1}, \ldots, X_{t} be independent random variables taking values from $\{0,1\}$ with $\mathbb{E}\left[X_{i}\right]=p_{i}$. Let $X=X_{1}+X_{2}+\ldots+X_{t}$ and $\mu=p_{1}+\ldots+p_{t}$. Then, for $0<\epsilon<1$,

$$
\begin{gathered}
\operatorname{Pr}\{X>(1+\epsilon) \mu\}<e^{-\mu \epsilon^{2} / 3} \\
\operatorname{Pr}\{X<(1-\epsilon) \mu\}<e^{-\mu \epsilon^{2} / 2} .
\end{gathered}
$$

- By Chernoff's bound, with high probability, X should concentrate close to $\mathbb{E}[X]=s / 8$.

$$
\operatorname{Pr}\{X \geq s / 2\} \leq \operatorname{Pr}\{X \geq s / 4\} \leq e^{-s / 24} .
$$

This is at most δ if $s=O\left(\log \frac{1}{\delta}\right)$.

AMS F_{2} estimation algorithm

- Maintain s groups of t independent sketches X_{j}^{r},

$$
\begin{aligned}
& j=1,2, \ldots, t, r=1,2, \ldots, s, t=16 / \epsilon^{2} \text { and } \\
& s=O(\log (1 / \delta))
\end{aligned}
$$

- In each group r, take average

$$
Y_{r}=\operatorname{avg}_{j=1}^{t}\left(X_{j}^{r}\right)^{2}, \quad r=1,2, \ldots s
$$

- Return median of the averages

$$
\hat{F}_{2}=\operatorname{med}_{r=1}^{s} Y_{j}
$$

- Property:

$$
\operatorname{Pr}\left\{\left|\hat{F}_{2}-F_{2}\right|<\epsilon F_{2}\right\} \geq 1-\delta
$$

AMS: Resources consumed

Space:

- Let $\left|f_{i}\right| \leq m$. Each sketch $\sum_{i} f_{i} \xi(i)$ can be stored in $\log (m n)$ bits.
- Space $=O\left(\frac{1}{\epsilon^{2}} \log (1 / \delta)\right) \times \log (m n)$.

Time to process stream update (i, v) :

- Each sketch is updated.
- Requires evaluating degree 3 polynomial over \mathbb{F} : $O(1)$ simple field operations.
Randomness:
- Each sketch requires $4 \log n$ random bits.

A Dimensionality Reduction View

- Suppose we keep $s=O(\log m)$ groups.
- Sketch as a map: $f \in \mathbb{R}^{n}$ to $\operatorname{sk}(f) \in \mathbb{R}^{O\left(\epsilon^{-2} \log (m)\right)}$.
- m streams with frequency vectors f^{1}, \ldots, f^{m}.
- Sketch is linear: therefore,

$$
s k\left(f^{i}-f^{j}\right)=s k\left(f^{i}\right)-s k\left(f^{j}\right) .
$$

- So with probability $1-\frac{1}{8 m^{2}}\left(\frac{m^{2}}{2}+m\right) \geq 7 / 8$, we have

$$
\begin{aligned}
\left\|f^{i}-f^{j}\right\|_{2} & \in(1 \pm \epsilon) \operatorname{Medavg}\left(s k\left(f^{\prime}\right)-s k\left(f^{j}\right)\right), \forall i, j . \\
\left\|f^{i}\right\| & \in(1 \pm \epsilon) \operatorname{Medavg}\left(s k\left(f^{\prime}\right)\right), \forall i
\end{aligned}
$$

- Medavg is not ℓ_{2} norm.

Dimensionality Reduction: Metric Space view

- A discrete metric space $\left(X, d_{X}\right): X$ is a finite set of points, $d_{X}(x, y)$ gives distance between points x and y in $X . d_{X}$ function satisfies metric properties.
- $\left(X, d_{X}\right)$ embeds into $\left(Y, d_{Y}\right)$ with distortion D if there exists $f: X \rightarrow Y$ and a scaling constant c such that

$$
c \cdot d_{X}(x, y) \leq d_{Y}(f(x), f(y)) \leq c \cdot D \cdot d_{X}(x, y), \quad \forall x, y \in X
$$

Well-known embeddability results

- [Bourgain] Every metric space can be embedded into ℓ_{2} (any ℓ_{p}) with $O(\log n)$ distortion.
- [Johnson-Lindenstrauss(J-L)] There exists a randomized mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{t}, t=O\left(\epsilon^{-2} \log m\right)$ s.t. for any set S of m points from \mathbb{R}^{n}

$$
(1-\epsilon)\|x-y\|_{2} \leq\|f(x)-f(y)\|_{2} \leq\|x-y\|_{2}, \forall x, y \in S .
$$

- ($1+\epsilon$)-distortion for arbitrary ϵ : known to be impossible for ℓ_{p} to ℓ_{q} metric.

Non-embeddability doesn't imply non-estimation

Following is still possible:

- there is a randomized function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{t}$, $t=O\left(1 / \epsilon^{2} \log m\right)$ s.t. for any set S from \mathbb{R}^{n} having m points,

$$
\|x-y\|_{p} \in(1 \pm \epsilon) d^{\prime}(f(x), f(y)), \quad \forall x, y \in S
$$

with probability $7 / 8$.

- But d^{\prime} is not a metric.

Usefulness of Embeddability

- ϵ-distortion implies: nearest neighbors are approximately preserved.
- k-d trees and other ℓ_{2}-based geometric data structures can be used in much fewer dimensions.
- Time complexity of most geometric algorithms, including NN , is exponential in dimension.
- A basic step in reducing this "curse of dimensionality".

Normal Distribution

- Gaussian distribution (Normal distribution):
$X \sim N\left(\mu, \sigma^{2}\right)$.
- $\mathbb{E}[X]=\mu, \operatorname{Var}[X]=\sigma^{2}$.
- Probability density function:

$$
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- Standard Normal distribution: $N(0,1)$.
- Stability: Sum of independent normally distributed variates is normally distributed. $X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right), i=1,2, \ldots, k, X_{i}$'s independent. Then,

$$
X_{1}+\ldots+X_{k} \sim N\left(\mu_{1}+\ldots+\mu_{k}, \sigma_{1}^{2}+\ldots+\sigma_{k}^{2}\right)
$$

Gamma distribution

- Gamma $(k, \theta), k=$ Gamma parameter, $\theta=$ scale factor (non-negative).
- Pdf: $f(x ; k, \theta)=\frac{1}{\theta^{k} \Gamma(k)} x^{k-1} e^{-x / \theta}$.
- $\mathbb{E}[X]=k \theta$.
- If $X \sim N\left(0, \sigma^{2}\right)$, then, $X^{2} \sim \operatorname{Gamma}\left(1 / 2,2 \sigma^{2}\right)$.
- Scaling Property: If $X \sim \operatorname{Gamma}(k, \theta)$, then, $a X \sim \operatorname{Gamma}(k, a \theta)$.
- Sum of Gamma variates is Gamma distributed if scale factors are same.
Let $X_{i} \sim \operatorname{Gamma}\left(k_{i}, \theta\right)$ and independent. Then,

$$
X_{1}+\ldots+X_{r} \sim \operatorname{Gamma}\left(k_{1}+k_{2}+\ldots+k_{r}, \theta\right)
$$

Application to estimating F_{2} : Gaussian sketches

- Let $\xi(j) \sim N(0,1)$ for $j \in[n]$.
- $\xi(j)$'s are (fully) independent. Ignore randomness/space/time required for now.
- Consider sketch

$$
X=\sum_{i=1}^{n} f_{i} \xi(i)
$$

- By stability property of normal distr.

$$
X \sim N\left(0, F_{2}\right)
$$

- Problem reduces to: Estimate variance of X.

Gaussian sketches

- Let $X_{1}, X_{2}, \ldots, X_{t}$ be independent Gaussian sketches.
- Define

$$
Y=X_{1}^{2}+\ldots+X_{t}^{2}
$$

- Each $X_{j}^{2} \sim$ Gamma $\left(1 / 2,2 F_{2}\right)$. Therefore,

$$
Y \sim \operatorname{Gamma}\left(t / 2,2 F_{2}\right)
$$

- $\mathbb{E}[Y]=t F_{2}$.
- Need Tail probabilities:

$$
\operatorname{Pr}\left\{Y>(1+\epsilon) F_{2}\right\} \text { and } \operatorname{Pr}\left\{Y<(1-\epsilon) F_{2}\right\}
$$

Tail Bounds for Gamma Distribution

Property. Let $Y \sim \operatorname{Gamma}(t, \theta)$. Then, for $\epsilon<1$,

$$
\operatorname{Pr}\{Y \in(1 \pm \epsilon) \mathbb{E}[Y]\} \leq \frac{2 e^{-\epsilon^{2} t / 6}}{\epsilon \sqrt{2 \pi(t-1)}}
$$

- Let $Y=\left(X_{1}^{2}+\ldots+X_{2 t}^{2}\right) / t \sim \operatorname{Gamma}\left(t, F_{2} / t\right)$.
- Let $t=O\left(\epsilon^{-2} \log (m)\right)$.
- By concentration property,

$$
Y \in(1 \pm \epsilon) F_{2} \text { with prob. } 1-\frac{1}{8 m^{2}}
$$

Another view of mapping: J-L Lemma

- $t \times n$ matrix A, entries $z_{i, j}$ drawn from $N(0,1)$ i.i.d.

$$
A=\left[\begin{array}{cccc}
z_{1,1} & z_{1,2} & \ldots & z_{1, n} \\
z_{2,1} & z_{2,1} & \ldots & z_{2, n} \\
& \vdots & \vdots & \\
z_{t, 1} & z_{t, 2} & \ldots & z_{t, n}
\end{array}\right]
$$

- $x \in \mathbb{R}^{n}, x \mapsto A x,\|A x\|_{2} \in(1 \pm \epsilon)\|x\|_{2}$ with prob. $1-1 / m^{O(1)}$.
- By linearity, $A(x-y)=A x-A y$.
- Let $t=O\left(\epsilon^{-2} \log m\right)$. For any set S of m points,

$$
\|A x-A y\|_{2} \in(1 \pm \epsilon)\|x-y\|_{2}, \quad \forall x, y \in S
$$

with probability $1-1 / m^{2}$.

Other Applications of Sketching

- Estimating ℓ_{p} norms for $0<p<2$.
- Heavy Hitters: HH_{p}^{ϕ}
- If $|f|_{i}>\phi\|f\|_{p}$, then, $i \in \mathrm{HH}_{p}^{\phi}$.
- Parameter $\phi^{\prime}:$ If $|f|_{i}<\phi^{\prime}| | f \|_{p}$, then, $i \notin \mathrm{HH}_{p}^{\phi, \phi^{\prime}}$.
- Estimating ℓ_{p} norms for $p>2$.

Conclusion (Sketching Streams)

THANK YOU!

