
Sketching
Streams

Sumit Ganguly

IIT Kanpur

Data Stream Model

Stream is a sequence of records
▶ Arrives fast, continuously.
▶ Not enough main memory to store stream.
▶ Too fast to store on secondary storage with random

access. May be stored as a log file for later mining.

Example Applications

▶ Network switch data (Distr. Denial of Service brewing?)
▶ Sensor networks (intrusion?)
▶ Satellite data (storm? flashflood?)
▶ Others: web-usage, financial market, etc.

Data Stream Processing Model

▶ Low space data structure: Sub-linear/ poly-logarithmic in
stream size.

▶ Process each arriving record efficiently to match fast
arrival speeds.

▶ Online Processing: input record is processed as it arrives.
▶ Streaming Model: Online, sub-linear space and time

processing.
▶ Other Models: not in this talk.

▶ Semi-Streaming: Stores data in sequential order. Multiple
passes are allowed.

This talk

Some algorithmic techniques have evolved for data stream
processing. We will see some important ones:

Linear Sketching, Dimensionality Reduction.

Not in this talk

Sampling from Data Streams: Not covered

Data Stream Model

▶ Domain of items [n] = {1,2, . . . ,n}.
▶ n is known but very large : IP-addresses, pairs of

IP-addresses—264.
▶ Insert-Delete Streams: Sequence of updates

(item, change in frequency) ≡ (i , v).

(1,1) (4,1) (5,3) (7,1) (5,−1) (5,2) (7,2) (6,1) (1,−1) . . .

Frequency Vector of Stream

(1,1) (4,1) (5,3) (7,1) (5,−1) (5,2) (7,2) (6,1) (1,−1) . . .

Incremental view:
1. Initially f = 0.
2. When (i , v) arrives:

fi :=fi + v .

Global view:

fi =
∑

(i,v)∈ stream

v , i ∈ [n] .

Data Streaming: Algorithmic Model

▶ Single pass over stream (Online algorithm).
▶ Sublinear storage: n� (� < 1) or, better poly-logarithmic

in n.
▶ Units of storage: bits.

▶ Fast processing per arriving stream record.
▶ Approximate processing (almost always necessary).
▶ Randomized computation (almost always necessary).

Independence in Probability: Revisited

▶ Independence: Random variables {X1,X2, . . . ,Xn} are
independent if their joint probability (density) function is
the product of individual probability (density) function.

▶ Computational Problems:
▶ Design h : [n]→ {0,1} so that {h(1), . . . ,h(n)} are

independent. All constructions require Ω(n) random bits.
▶ High randomness and storage.
▶ Algorithms may not always require full independence.
▶ Approximate independence often suffices.

Limited Independence

{X1,X2, . . . ,Xn} are k -wise independent if the joint distribution
of any k variables is the product of their individual
distributions.

Pr
{

Xi1 = a1 ∧ Xi2 = a2 ∧ . . . ∧ Xik = ak
}

= Pr
{

Xi1 = a1
}

Pr
{

Xi2 = a2
}
. . .Pr

{
Xik = ak

}
.

for any k distinct indices 1 ≤ i1, i2, . . . , ik ≤ n and
a1 ∈ support(Xi1), . . . ,ak ∈ support(Xik).

▶ Product of expectation of any k distinct variables is the
product of individual expectations.

▶ k -wise independence implies k − 1-wise indep.

k -wise independent hash functions

[Wegman Carter JCSS 81]

▶ ℋ is a finite family of functions mapping [n]→ [m].
▶ Pick random member h ∈ ℋ with prob. 1/∣ℋ∣.
▶ ℋ is k -wise independent if {h(x1), . . . ,h(xn)} are k -wise

independent.
▶ Equivalently, for distinct x1, x2, . . . , xk ∈ [n] and

b1, . . . ,bk ∈ [m] not necessarily distinct,

Pr
h∈ℋ
{(h(x1) = b1) ∧ (h(x2) = b2) . . . ∧ (h(xk) = bk)}

=

Pr
h∈ℋ
{h(x1) = b1} ⋅ Pr

h∈ℋ
{h(x2 = b2)} ⋅ ⋅ ⋅ ⋅ × Pr

h∈ℋ
{h(xk) = bk} .

Hash Family: Degree k − 1 polynomials

▶ F is a finite field of size at least n.
▶ ℋk : set of all k -tuples from F. So ∣ℋk ∣ = ∣F∣k .
▶ Interpret a k -tuple (a0, . . . ,ak−1) as a degree k − 1

polynomial p(x) over F:

p(x) = a0 + a1x + a2x2 + . . .+ ak−1xk−1 .

▶ The family ℋk is k -wise independent.

Space and Randomness

▶ ∣ℋk ∣ = ∣F∣k .

▶ Requires k log∣F∣ bits to store a polynomial from ℋk .
▶ Randomness required: choose a0, . . . ,ak at

random–k log∣F∣ random bits.
▶ h(⋅) can be computed in time O(k) field operations (+, ⋅).
▶ Special Case. ℋ2 : space of affine functions over F

h(x) = a0 + a1x , a0,a1 ∈ F .

Pair-wise independence.
“Pair-wise independence and Derandomization”, Luby
and Wigderson (web)

Frequency Moment Estimation

▶ Frequency moment defined as

Fp =
∑
i∈[n]

∣fi ∣k .

p ∈ ℝ and non-negative.
▶ The problem of estimating frequency moments has

played an important role in data stream computations.
▶ F0 is the number of distinct elements in the stream

F0 =
∑
i∈[n]

∣fi ∣0 =
∣∣{i : fi ∕= 0}

∣∣ .

F2 Estimation Problem

[Alon Matias Szegedy: STOC’96, JCSS ’98.]
▶ Deterministically estimating F2 to within 1± 1/16

requires Ω(n) space.
▶ Modified problem: Given � and �, design an algorithm

that returns F̂2 satisfying

∣F̂2 − F2∣ ≤ �F2 with prob. 1− � .

Linear Sketch

▶ Let � : [n]→ {−1,+1}
▶ �(⋅) four-wise independent hash function.
▶ Maps to ±1 with equal probability.

▶ Implementation: Choose h at random from the family of cubic
polynomials over F2r , where, n ≤ 2r < 2n.

�(u) =

{
1 if last bit of h(u) = 1
−1 otherwise.

▶ A sketch is a linear combination

X =
n∑

i=1

fi�(i) .

▶ Updating sketch in presence of stream updates:

UPDATESKETCH(i , v) : X :=X + v ⋅ �(i) .

Sketches

Sketch:
∑

i fi�(i), � : [n]→ {−1,+1} four wise independent.

E [�(i)] = (−1)
1
2

+ (1)
1
2

= 0

We now calculate E
[
X 2].

E
[
X 2
]

= E

[(n∑
i=1

fi�(i)
)2
]

= E

⎡⎣ n∑
i=1

f 2
i (�(i))2 + 2

∑
1≤i<j≤n

fi fj�(i)�(j)

⎤⎦
=

n∑
i=1

f 2
i E
[
(�(i))2

]
+ 2

∑
1≤i<j≤n

fi fjE [�(i)�(j)]

using linearity of expectation.

Sketch: Expectation

▶ We have shown that

E
[
X 2
]

=
n∑

i=1

f 2
i E
[
(�(i))2

]
+ 2

∑
1≤i<j≤n

fi fjE [�(i)�(j)] .

▶ Now, (�(i))2 = 1, and by pair-wise independence, if i ∕= j ,

E [�(i)�(j)] = E [�(i)]E [�(j)] = 0 ⋅ 0 = 0 .

▶ Therefore, we get an unbiased estimator.

E
[
X 2
]

=
n∑

i=1

f 2
i = F2 .

Sketch:Variance

E
[
X 4] = E

[(n∑
i=1

fi�(i)
)4
]

= E
[n∑

i=1

fi�(i)
n∑

j=1

fj�(j)
n∑

k=1

fk�(k)
n∑

l=1

fl�(l)
]

Expanding

E
[
X 4] = E

[n∑
i=1

f 4
i �(i)4 +

∑
i ∕=j

4f 3
i fj (�(i))3�(j)

+
∑

i,j distinct

6f 2
i f 2

j �(i)2�(j)2 +
∑

i,j,k distinct

12f 2
i fj fk�(i)2�(j)�(k)

+
∑

i,j,k,l distinct

4!fi fj fk fl�(i)�(j)�(k)�(l)
]

Sketch: Variance
Using linearity of expectation

E
[
X 4] =

n∑
i=1

f 4
i E
[
�(i)4]+

∑
i ∕=j

4f 3
i fjE

[
(�(i))3�(j)

]
+

∑
i,j distinct

6f 2
i f 2

j E
[
�(i)2�(j)2]+

∑
i,j,k distinct

12f 2
i fj fkE

[
�(i)2�(j)�(k)

]
+

∑
i,j,k,l distinct

4!fi fj fk flE [�(i)�(j)�(k)�(l)]

�(j)’s are 4-wise independent. So expectation of pair-wise,
three-wise or four-wise products of �(j)’s are the product of the
corresponding expectations.

So, for {i , j , k , l} distinct

�(i)2 = �(i)4 = 1

E
[
�(i)3�(j)

]
= E [�(i)�(j)] = E [�(i)]E [�(j)] = 0 ⋅ 0 = 0

E
[
�(i)2�(j)�(k)

]
= E [�(j)�(k)] = 0

E [�(i)�(j)�(k)�(l)] = E [�(i)]E [�(j)]E [�(k)]E [�(l)] = 0 ⋅ 0 ⋅ 0 ⋅ 0 = 0 .

Sketch: Variance
Using linearity of expectation

E
[
X 4] =

n∑
i=1

f 4
i E
[
�(i)4]+

∑
i ∕=j

4f 3
i fjE

[
(�(i))3�(j)

]
+

∑
i,j distinct

6f 2
i f 2

j E
[
�(i)2�(j)2]+

∑
i,j,k distinct

12f 2
i fj fkE

[
�(i)2�(j)�(k)

]
+

∑
i,j,k,l distinct

4!fi fj fk flE [�(i)�(j)�(k)�(l)]

�(j)’s are 4-wise independent. So expectation of pair-wise,
three-wise or four-wise products of �(j)’s are the product of the
corresponding expectations. So, for {i , j , k , l} distinct

�(i)2 = �(i)4 = 1

E
[
�(i)3�(j)

]
= E [�(i)�(j)] = E [�(i)]E [�(j)] = 0 ⋅ 0 = 0

E
[
�(i)2�(j)�(k)

]
= E [�(j)�(k)] = 0

E [�(i)�(j)�(k)�(l)] = E [�(i)]E [�(j)]E [�(k)]E [�(l)] = 0 ⋅ 0 ⋅ 0 ⋅ 0 = 0 .

Sketches: Variance contd.

From Last Slide

E
[
X 4] =

n∑
i=1

f 4
i E
[
�(i)4]+

∑
i,j distinct

4f 3
i fjE

[
(�(i))3�(j)

]
+
∑
i ∕=j

6f 2
i f 2

j E
[
�(i)2�(j)2]+

∑
i,j,k distinct

12f 2
i fj fkE

[
�(i)2�(j)�(k)

]
+

∑
i,j,k,l distinct

4!fi fj fk flE [�(i)�(j)�(k)�(l)]

E
[
X 4] =

n∑
i=1

f 4
i +

∑
i,j distinct

6f 2
i f 2

j ≤ 3
(n∑

i=1

f 2
i

)2

≤ 3F 2
2 .

Designing estimator for F2

AMS Sketch: X =
∑
i∈[n]

fi�(i), � : [n]→ {1,−1} 4-wise indep. .

E
[
X 2
]

= F2 .

Var
[
X 2] = E

[
X 4
]
− (E [X])2 ≤ 3F 2

2 − F 2
2 = 2F 2

2

▶ We can use Chebychev’s inequality (Recall)

Pr {∣Y − E [Y]∣ > t} <
Var
[
Y
]

t2 .

for any real valued variable Y .

Designing estimator for F2 contd.

▶ Need a random variable Y with expectation F2 and
variance at most �2F 2

2 /8.
▶ Why? Then, by Chebychev’s inequality, we would have,

Pr {∣Y − F2∣ > �F2} ≤
Var
[
Y
]

�2F 2
2
≤ 1

8
.

▶ Keep t independent sketches X1,X2, . . .Xt . Return
averages of squares: Y =

(
X 2

1 + . . .+ X 2
t
)
/t .

▶ Taking average preserves expectation, by linearity of
expectation and X 2

i are i.d. So E [Y] = E
[
X 2

1
]

= F2.
▶ Since, X 2

i ’s are independent, variance of their sum is the
sum of their variances. So,

Var
[
Y
]

=
1
t2 tVar

[
X 2

1
]

= 2F 2
2 /t .

Estimator for F2

▶ Let t = 16/�2. Then E [Y] = F2 and

Var
[
Y
]
≤ �2F 2

2 /8 .

▶ Therefore, by Chebychev’s inequality

Pr
{∣∣Y − F2

∣∣ ≤ �F2
}
≥ 7

8
.

▶ We now use a standard argument for boosting
confidence.

Boosting confidence from constant > 1/2 to 1− �

▶ Let A be a randomized algorithm.

▶ On input I, correct value is Y (I).

▶ Suppose A on input I returns (random) numeric value Ŷ (I).
and the following guarantee:

Pr
{
∣Ŷ (I)− Y (I)∣ < �Y (I)

}
≥ 7

8

▶ To boost confidence to 1− �, run A independently on I
s = O(log 1

�) times to obtain

Ŷ1(I), . . . , Ŷs(I) .

▶ Now return
med{Ŷ1(I), . . . , Ŷs(I)}

Boosting using Median: Analysis

▶ Xi = 0 if the j th run of A gives a “good answer” and is 1
otherwise.

Xj =

{
0 if ∣Ŷj (I)− Y (I)∣ < �Y (I)
1 otherwise.

Pr {Xj = 1} ≤ 1
8

▶ Let X = X1 + X2 + . . .+ Xs: count number of “bad” answers.
▶ E [X] ≤ s/8.

▶ The event
∣∣med(Ŷ1(I), . . . , Ŷk (I))− Y (I)

∣∣ > �Y (I) implies

X ≥ s
2
.

Boosting with median: Analysis

Chernoff’s bound
Let X1, . . . ,Xt be independent random variables taking values
from {0,1} with E [Xi] = pi . Let X = X1 + X2 + . . .+ Xt and
� = p1 + . . .+ pt . Then, for 0 < � < 1,

Pr {X > (1 + �)�} < e−��
2/3

Pr {X < (1− �)�} < e−��
2/2 .

▶ By Chernoff’s bound, with high probability, X should
concentrate close to E [X] = s/8.

Pr {X ≥ s/2} ≤ Pr {X ≥ s/4} ≤ e−s/24 .

This is at most � if s = O(log 1
�).

AMS F2 estimation algorithm

▶ Maintain s groups of t independent sketches X r
j ,

j = 1,2, . . . , t , r = 1,2, . . . , s, t = 16/�2 and
s = O(log(1/�)).

▶ In each group r , take average

Yr = avgt
j=1(X r

j)2, r = 1,2, . . . s .

▶ Return median of the averages

F̂2 = meds
r=1Yj .

▶ Property:

Pr
{
∣F̂2 − F2∣ < �F2

}
≥ 1− � .

AMS: Resources consumed

Space:
▶ Let ∣fi ∣ ≤ m. Each sketch

∑
i fi�(i) can be stored in

log(mn) bits.
▶ Space = O(1

�2
log(1/�))× log(mn).

Time to process stream update (i , v):
▶ Each sketch is updated.
▶ Requires evaluating degree 3 polynomial over F : O(1)

simple field operations.
Randomness:

▶ Each sketch requires 4 log n random bits.

A Dimensionality Reduction View

▶ Suppose we keep s = O(log m) groups.
▶ Sketch as a map: f ∈ ℝn to sk(f) ∈ ℝO(�−2 log(m)).
▶ m streams with frequency vectors f 1, . . . , f m.
▶ Sketch is linear: therefore,

sk(f i − f j) = sk(f i)− sk(f j) .

▶ So with probability 1− 1
8m2

(
m2

2 + m
)
≥ 7/8, we have

∥f i − f j∥2 ∈ (1± �)Medavg(sk(f i)− sk(f j)), ∀i , j .
∥f i∥ ∈ (1± �)Medavg(sk(f i)),∀i

▶ Medavg is not ℓ2 norm.

Dimensionality Reduction: Metric Space view

▶ A discrete metric space (X ,dX): X is a finite set of points,
dX (x , y) gives distance between points x and y in X . dX
function satisfies metric properties.

▶ (X ,dX) embeds into (Y ,dY) with distortion D if there
exists f : X → Y and a scaling constant c such that

c ⋅dX (x , y) ≤ dY (f (x), f (y)) ≤ c ⋅D ⋅dX (x , y), ∀x , y ∈ X .

Well-known embeddability results

▶ [Bourgain] Every metric space can be embedded into ℓ2
(any ℓp) with O(log n) distortion.

▶ [Johnson-Lindenstrauss(J-L)] There exists a randomized
mapping f : ℝn → ℝt , t = O(�−2 log m) s.t. for any set S
of m points from ℝn

(1− �)∥x − y∥2 ≤ ∥f (x)− f (y)∥2 ≤ ∥x − y∥2, ∀x , y ∈ S .

▶ (1 + �)-distortion for arbitrary �: known to be impossible
for ℓp to ℓq metric.

Non-embeddability doesn’t imply non-estimation

Following is still possible:
▶ there is a randomized function f : ℝn → ℝt ,

t = O(1/�2 log m) s.t. for any set S from ℝn having m
points,

∥x − y∥p ∈ (1± �)d ′(f (x), f (y)), ∀x , y ∈ S

with probability 7/8.
▶ But d ′ is not a metric.

Usefulness of Embeddability

▶ �-distortion implies: nearest neighbors are approximately
preserved.

▶ k -d trees and other ℓ2-based geometric data structures
can be used in much fewer dimensions.

▶ Time complexity of most geometric algorithms, including
NN, is exponential in dimension.

▶ A basic step in reducing this “curse of dimensionality”.

Normal Distribution

▶ Gaussian distribution (Normal distribution):
X ∼ N(�, �2).

▶ E [X] = �, Var
[
X
]

= �2.
▶ Probability density function:

fX (x) =
1

�
√

2�
e−

(x−�)2

2�2 .

▶ Standard Normal distribution: N(0,1).
▶ Stability: Sum of independent normally distributed

variates is normally distributed.
Xi ∼ N(�i , �

2
i), i = 1,2, . . . , k , Xi ’s independent. Then,

X1 + . . .+ Xk ∼ N(�1 + . . .+ �k , �
2
1 + . . .+ �2

k) .

Gamma distribution

▶ Gamma(k , �), k = Gamma parameter, � = scale factor
(non-negative).

▶ Pdf: f (x ; k , �) = 1
�k Γ(k)

xk−1e−x/� .

▶ E [X] = k�.
▶ If X ∼ N(0, �2), then, X 2 ∼ Gamma(1/2,2�2).
▶ Scaling Property: If X ∼ Gamma(k , �), then,

aX ∼ Gamma(k ,a�) .

▶ Sum of Gamma variates is Gamma distributed if scale
factors are same.
Let Xi ∼ Gamma(ki , �) and independent. Then,

X1 + . . .+ Xr ∼ Gamma(k1 + k2 + . . .+ kr , �) .

Application to estimating F2: Gaussian sketches

▶ Let �(j) ∼ N(0,1) for j ∈ [n].
▶ �(j)’s are (fully) independent. Ignore

randomness/space/time required for now.
▶ Consider sketch

X =
n∑

i=1

fi�(i) .

▶ By stability property of normal distr.

X ∼ N(0,F2) .

▶ Problem reduces to: Estimate variance of X .

Gaussian sketches

▶ Let X1,X2, . . . ,Xt be independent Gaussian sketches.
▶ Define

Y = X 2
1 + . . .+ X 2

t .

▶ Each X 2
j ∼ Gamma (1/2,2F2). Therefore,

Y ∼ Gamma(t/2,2F2) .

▶ E [Y] = tF2.
▶ Need Tail probabilities:

Pr {Y > (1 + �)F2} and Pr {Y < (1− �)F2} .

Tail Bounds for Gamma Distribution

Property. Let Y ∼ Gamma(t , �). Then, for � < 1,

Pr {Y ∈ (1± �)E [Y]} ≤ 2e−�
2t/6

�
√

2�(t − 1)
.

▶ Let Y = (X 2
1 + . . .+ X 2

2t)/t ∼ Gamma(t ,F2/t) .

▶ Let t = O(�−2 log(m)).
▶ By concentration property,

Y ∈ (1± �)F2 with prob. 1− 1
8m2 .

Another view of mapping: J-L Lemma

▶ t × n matrix A, entries zi,j drawn from N(0,1) i.i.d.

A =

⎡⎢⎢⎢⎣
z1,1 z1,2 . . . z1,n
z2,1 z2,1 . . . z2,n

...
...

zt ,1 zt ,2 . . . zt ,n

⎤⎥⎥⎥⎦
▶ x ∈ ℝn, x 7→ Ax , ∥Ax∥2 ∈ (1± �)∥x∥2 with prob.

1− 1/mO(1).
▶ By linearity, A(x − y) = Ax − Ay .
▶ Let t = O(�−2 log m). For any set S of m points,

∥Ax − Ay∥2 ∈ (1± �)∥x − y∥2, ∀x , y ∈ S

with probability 1− 1/m2.

Other Applications of Sketching

▶ Estimating ℓp norms for 0 < p < 2.

▶ Heavy Hitters: HH�
p

▶ If ∣f ∣i > �∥f∥p, then, i ∈ HH�p .
▶ Parameter �′: If ∣f ∣i < �′∥f∥p, then, i ∕∈ HH�,�

′

p .
▶ Estimating ℓp norms for p > 2.

Conclusion (Sketching Streams)

THANK YOU!

