
'

&

$

%

Geometric Representations of Graphs

L. Sunil Chandran

Assistant Professor

Comp. Science and Automation

Indian Institute of Science

Bangalore- 560012.

Email: sunil@csa.iisc.ernet.in

1



'

&

$

%

• Conventionally graphs are represented as

adjacency matrices, or adjacency lists.

Algorithms are designed with such

representations in mind usually.

• It is better to look at the structure of graphs

and find some representations that are

suitable for designing algorithms- say for a

class of problems.

• Intersection graphs: The vertices correspond

to the subsets of a set U . The vertices are

made adjacent if and only if the

corresponding subsets intersect.

• We propose to use some nice geometric

objects as the subsets- like spheres, cubes,

boxes etc. Here U will be the set of points in

a low dimensional space.

2



'

&

$

%

• There are many situations where an

intersection graph of geometric objects arises

naturally....

• Some times otherwise NP-hard algorithmic

problems become polytime solvable if we have

geometric representation of the graph in a

space of low dimension.
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Boxicity and Cubicity

• Cubicity: Minimum dimension k such that

G can be represented as the intersection

graph of k-dimensional cubes.

• Boxicity: Minimum dimension k such that

G can be represented as the intersection

graph of k-dimensional axis parallel boxes.

• These concepts were introduced by F. S.

Roberts, in 1969, motivated by some

problems in ecology.

• By the later part of eighties, the research in

this area had diminished.
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An Equivalent Combinatorial Problem

• The boxicity(G) is the same as the minimum

number k such that there exist interval graphs

I1, I2, . . . , Ik such that G = I1 ∩ I2 ∩ · · · ∩ Ik.

• Similarly, cubicity(G) is the minimum

number k such that there exists unit interval

graphs I1, . . . , Ik such that G = I1 ∩ · · · ∩ Ik.
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How to show a graph of high boxicity

• Let G be the complement of a perfect

matching on n vertices. (Assume n is even).

• Suppose it is the intersection n/2 − 1 interval

graphs.

• Then out of the n/2 missing edges of G, at

least 2 should be missing in the same interval

graph- by pigeon hole principle.

• Then it cannot be an interval graph, since

there will be an induced 4 cycle !

• So, the boxicity of this graph is at least n/2.
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A Simple Upper Bound

• Take a vertex u.

• Map u to the interval [0, 1].

• Map each vertex in N(u) to [1, 2].

• Map each vertex in V − ({u} ∪N(u)) to [2, 3].

• Do the same thing for each vertex u. We get

n interval graphs.

• So, boxicity of G ≤ n.
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How to Improve the above strategy

• Can we deal with 2 vertices at a time ?

• What kind of pairs can be selected ? Roberts

suggests to pick a pair of non-adjacent

vertices.

• Let u and v be non-adjacent.

• Let u be given [0, 1] and v be given [4, 5].

• Remaining vertices belong to one of

S0 = N(u) ∩N(v), S1 = N(u) − S0,

S2 = N(v) − S0. S3 = V − (N(u) ∪N(v)).

• To vertices of S0 give [1, 4]

• To vertices of S1 give [1, 2.5]

• To vertices of S2 give [2.5, 4]

• To vertices of S3 give [2, 3]

• Repeat the procedure. When do we get stuck

?

• This strategy gives an upper bound of ⌈n/2⌉
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Boxicity and Maximum Degree

Boxicity of any graph is at most 2∆2, where ∆ is

the maximum degree of the graph.

(The only previous known upper bound was n/2

where n is the number of vertices)
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Cubicity of any graph is O(∆ log n), where ∆ is

the maximum degree and n is the number of

vertices.

For the first time, we applied probabilistic tools in

the study of boxicity and cubicity.
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We related cubicity and boxicity with width

parameters such as bandwidth and treewidth.

1. boxicity(G) ≤ treewidth(G) + 2.

Treewidth is a very well studied parameter. This

allowed us to get many results regarding boxicity.

11



'

&

$

%

The following consequence of the treewidth upper

bound is interesting.

For a chordal graph, boxicity is at most χ(G) + 1.
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• cubicity(G) ≤ bandwidth(G) + 1.

• cubicity(G) = O(b logn), where b is the

bandwidth and n is the number of vertices.
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Another upper bound: boxicity (G) ≤ ⌊ t

2⌋ + 1,

where t is the cardinality of the minimum vertex

cover in G.
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Some other results we obtained

• Cubicity of d-dimensional hypercubes is

Θ(d/ log d).
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The Claw Number: Let ψ be the largest integer

such that there exists an induced star on ψ + 1

vertices in G. The ψ is called the claw number of

G.

• Cubicity of an interval graph is O(logψ).

Note that ψ ≤ ∆.
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Let G be an AT-free graph. Then:

• boxicity(G) ≤ χ(G).

• cubicity(G) ≤ box (G).(⌈logψ(G)⌉ + 2)

• If girth of G is at least 5, then

boxicity(G) ≤ 2.
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Lower bounds for boxicity: We came up with two

general methods to derive lower bounds for

boxicity. Applying these methods we could derive

many results, some of which are listed below.

• The boxicity of almost all graphs is Ω(dav),

where dav is the average degree of the graph.

• If the minimum degree is δ, then boxicity is

at least n

2(n−δ−1)
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