Introduction to Computational Geometry

Partha P. Goswami
(ppg.rpe@caluniv.ac.in)

Institute of Radiophysics and Electronics
University of Calcutta
92, APC Road, Kolkata - 700009, West Bengal, India.

Outline

Introduction- Area Computation of a Simple PolygonPoint Inclusion in a Simple PolygonConvex Hull: An application of incremental algorithmArt Gallery Problem: A study of combinatorial geometry

Introduction

- Computational Geometry (CG) involves study of algorithms for solving geometric problems on a computer. The emphasis is more on discrete and combinatorial geometry.

Introduction

- Computational Geometry (CG) involves study of algorithms for solving geometric problems on a computer. The emphasis is more on discrete and combinatorial geometry.
- There are many areas in computer science like computer graphics, computer vision and image processing, robotics, computer-aided designing (CAD), geographic information systems (GIS), etc. that give rise to geometric problems.

Introduction

- Computational Geometry (CG) involves study of algorithms for solving geometric problems on a computer. The emphasis is more on discrete and combinatorial geometry.
- There are many areas in computer science like computer graphics, computer vision and image processing, robotics, computer-aided designing (CAD), geographic information systems (GIS), etc. that give rise to geometric problems.
- People deal more with straight or flat objects (lines, line segments, polygons) or simple curved objects as circles, than with high degree algebraic curves.

Introduction

- Computational Geometry (CG) involves study of algorithms for solving geometric problems on a computer. The emphasis is more on discrete and combinatorial geometry.
- There are many areas in computer science like computer graphics, computer vision and image processing, robotics, computer-aided designing (CAD), geographic information systems (GIS), etc. that give rise to geometric problems.
- People deal more with straight or flat objects (lines, line segments, polygons) or simple curved objects as circles, than with high degree algebraic curves.
- This branch of study is around thirty years old if one assumes Michael Ian Shamos's thesis [6] as the starting point.

Introduction

- Any problem that is to be solved using a digital computer has to be discrete in form. It is the same with CG.

Introduction

- Any problem that is to be solved using a digital computer has to be discrete in form. It is the same with CG.
- For CG techniques to be applied to areas that involves continuous issues, discrete approximations to continuous curves or surfaces are needed.

Introduction

- Any problem that is to be solved using a digital computer has to be discrete in form. It is the same with CG.
- For CG techniques to be applied to areas that involves continuous issues, discrete approximations to continuous curves or surfaces are needed.
- Programming in CG is a little difficult. Fortunately, libraries like LEDA [7] and CGAL [8] are now available. These libraries implement various data structures and algorithms specific to CG.

Introduction

- Any problem that is to be solved using a digital computer has to be discrete in form. It is the same with CG.
- For CG techniques to be applied to areas that involves continuous issues, discrete approximations to continuous curves or surfaces are needed.
- Programming in CG is a little difficult. Fortunately, libraries like LEDA [7] and CGAL [8] are now available. These libraries implement various data structures and algorithms specific to CG.
- CG algorithms suffer from the curse of degeneracies. So, we would make certain simplifying assumptions at times like no three points are collinear, no four points are cocircular, etc.

Introduction

- In this lecture, we touch upon a few simple topics for having a glimpse of the area of computational geometry.

Introduction

- In this lecture, we touch upon a few simple topics for having a glimpse of the area of computational geometry.
- First we consider some geometric primitives, that is, problems that arise frequently in computational geometry.

Outline

- Area Computation of a Simple Polygon
- Point Inclusion in a Simple Polygon
- Convex Hull: An application of incremental algorithm
(Art Gallery Problem: A study of combinatorial geometry

Area Computation

Problem

Given a simple polygon P of n vertices, compute its area.

Area Computation

Problem

Given a simple polygon P of n vertices, compute its area.

Area of a convex polygon

Find a point inside P, draw n triangles and compute the area.

Area Computation

Problem

Given a simple polygon P of n vertices, compute its area.

Area of a convex polygon

Find a point inside P, draw n triangles and compute the area.

A better idea for convex polygon We can triangulate P by non-crossing diagonals into $n-2$ triangles and then find the area.

Area Computation

Problem

Given a simple polygon P of n vertices, compute its area.

Area of a convex polygon

Find a point inside P, draw n triangles and compute the area.

A better idea for convex polygon We can triangulate P by non-crossing diagonals into $n-2$ triangles and then find the area.

A better idea for simple polygon

We can do likewise.

Area Computation

Result

If P be a simple polygon with n vertices with coordinates of the vertex p_{i} being $\left(x_{i}, y_{i}\right), 1 \leq i \leq n$, then twice the area of P is given by

$$
2 \mathcal{A}(P)=\sum_{i=1}^{n}\left(x_{i} y_{i+1}-y_{i} x_{i+1}\right)
$$

Polygon Triangulation

Theorem
 Any simple polygon can be triangulated.

Polygon Triangulation

Theorem

Any simple polygon can be triangulated.

Theorem

A simple polygon can be triangulated into $(n-2)$ triangles by ($n-3$) non-crossing diagonals.

Polygon Triangulation

Theorem

Any simple polygon can be triangulated.

Theorem

A simple polygon can be triangulated into $(n-2)$ triangles by ($n-3$) non-crossing diagonals.

Proof.

The proof is by induction on n.

Polygon Triangulation

Theorem

Any simple polygon can be triangulated.

Theorem

A simple polygon can be triangulated into $(n-2)$ triangles by ($n-3$) non-crossing diagonals.

Proof.

The proof is by induction on n.

Time complexity

We can triangulate P by a very complicated $O(n)$ algorithm [2] OR by a more or less simple $O(n \log n)$ time algorithm [1].

Outline

Introduction
() Area Computation of a Simple PolygonPoint Inclusion in a Simple Polygon

- Convex Hull: An application of incremental algorithm
(Art Gallery Problem: A study of combinatorial geometry

Point Inclusion

Problem

Given a simple polygon P of n points, and a query point q, is $q \in P$?

Point Inclusion

Problem

Given a simple polygon P of n points, and a query point q, is $q \in P$?

What if P is convex?

Easy in $O(n)$. Takes a little effort to do it in $O(\log n)$. Left as an exercise.

q is always to the right if $q \in \mathcal{P}$, else, it varies

Point Inclusion

Problem

Given a simple polygon P of n points, and a query point q, is $q \in P$?

What if P is convex?

Easy in $O(n)$. Takes a little effort to do it in $O(\log n)$. Left as an exercise.

Another idea for convex polygon
Stand at q and walk around the polygon. We can show the same result for a simple polygon also.

Point Inclusion

Another technique: Ray Shooting

Shoot a ray and count the number of crossings with edges of P. If it is odd, then $q \in P$. If it is even, then $q \notin P$. Some degenerate cases need to be handled. Time taken is $O(n)$.

Outline

IntroductionArea Computation of a Simple PolygonPoint Inclusion in a Simple PolygonConvex Hull: An application of incremental algorithm
(Art Gallery Problem: A study of combinatorial geometry

Definitions

Definition

A set $\mathcal{S} \subset \mathcal{R}^{2}$ is convex If for any two points $p, q \in \mathcal{S}, \overline{p q} \in \mathcal{S}$.

Definitions

Definition
 A set $\mathcal{S} \subset \mathcal{R}^{2}$ is convex If for any two points $p, q \in \mathcal{S}, \overline{p q} \in \mathcal{S}$.

Definitions

Definition
 A set $\mathcal{S} \subset \mathcal{R}^{2}$ is convex If for any two points $p, q \in \mathcal{S}, \overline{p q} \in \mathcal{S}$.

Definition

Let \mathcal{P} be a set of points in \mathcal{R}^{2}. Convex hull of \mathcal{P}, denoted by $\mathrm{CH}(\mathcal{P})$, is the smallest convex set containing \mathcal{P}.

Definitions

Definition

A set $\mathcal{S} \subset \mathcal{R}^{2}$ is convex If for any two points $p, q \in \mathcal{S}, \overline{p q} \in \mathcal{S}$.

Definition

Let \mathcal{P} be a set of points in \mathcal{R}^{2}. Convex hull of \mathcal{P}, denoted by $\mathrm{CH}(\mathcal{P})$, is the smallest convex set containing \mathcal{P}.

Definitions

Definition

A set $\mathcal{S} \subset \mathcal{R}^{2}$ is convex If for any two points $p, q \in \mathcal{S}, \overline{p q} \in \mathcal{S}$.

Definition

Let \mathcal{P} be a set of points in \mathcal{R}^{2}. Convex hull of \mathcal{P}, denoted by $\mathrm{CH}(\mathcal{P})$, is the smallest convex set containing \mathcal{P}.

Definitions

Definition

A set $\mathcal{S} \subset \mathcal{R}^{2}$ is convex If for any two points $p, q \in \mathcal{S}, \overline{p q} \in \mathcal{S}$.

Definition

Let \mathcal{P} be a set of points in \mathcal{R}^{2}.
Convex hull of \mathcal{P}, denoted by $C H(\mathcal{P})$, is the smallest convex
 set containing \mathcal{P}.

Convex Hull Problem

Problem

Given a set of points \mathcal{P} in the plane, compute the convex hull $\mathrm{CH}(\mathcal{P})$ of the set \mathcal{P}.

A Naive Algorithm

Outline

- Consider all line segments determined by $\binom{n}{2}=O\left(n^{2}\right)$ pairs of points.

A Naive Algorithm

Outline

- Consider all line segments determined by $\binom{n}{2}=O\left(n^{2}\right)$ pairs of points.
- If a line segment has all the other $n-2$ points on one side of it, then it is a hull edge.

A Naive Algorithm

Outline

- Consider all line segments determined by $\binom{n}{2}=O\left(n^{2}\right)$ pairs of points.
- If a line segment has all the other $n-2$ points on one side of it, then it is a hull edge.
- We need
$\binom{n}{2}(n-2)=O\left(n^{3}\right)$ time.

Towards a Better Algorithm

How much betterment is possible?

- Better characterizations lead to better algorithms.

Towards a Better Algorithm

How much betterment is possible?

- Better characterizations lead to better algorithms.
- How much better can we make?

Towards a Better Algorithm

How much betterment is possible?

- Better characterizations lead to better algorithms.
- How much better can we make?
- Leads to the notion of lower bound of a problem.

Towards a Better Algorithm

How much betterment is possible?

- Better characterizations lead to better algorithms.
- How much better can we make?
- Leads to the notion of lower bound of a problem.
- The problem of Convex Hull has a lower bound of $\Omega(n \log n)$. This can be shown by a reduction from the problem of sorting which also has a lower bound of $\Omega(n \log n)$.

Well Known Algorithms

- Grahams scan, time complexity $O(n \log n)$. (Graham, R.L., 1972)
- Divide and conquer algorithm, time complexity O (nlogn). (Preparata, F. P. and Hong, S. J., 1977)
- Jarvis's march or gift wrapping algorithm, time complexity $O(n h)$ where h is the number of vertices of the convex hull. (Jarvis, R. A., 1973)
- Most efficient algorithm to date is based on the idea of Jarvis's march, time complexity $O(n \operatorname{logh})$.
(T. M. Chan, 1996)

Definitions

A better characterization

- Consider a walk in clockwise direction on the vertices of a closed polygon.

Definitions

A better characterization

- Consider a walk in clockwise direction on the vertices of a closed polygon.
- Only for a convex polygon, we will make a right turn always.

Definitions

A better characterization

- Consider a walk in clockwise direction on the vertices of a closed polygon.
- Only for a convex polygon, we will make a right turn always.

The incremental paradigm

Definitions

A better characterization

- Consider a walk in clockwise direction on the vertices of a closed polygon.
- Only for a convex polygon, we will make a right turn always.

The incremental paradigm

- Insert points in P one by one and update the solution at each step.

Definitions

A better characterization

- Consider a walk in clockwise direction on the vertices of a closed polygon.
- Only for a convex polygon, we will make a right turn always.

The incremental paradigm

- Insert points in P one by one and update the solution at each step.
- We compute the upper hull first. The upper hull contains the convex hull edges that bound the convex hull from above.

lower hull

Definitions

A better characterization

- Consider a walk in clockwise direction on the vertices of a closed polygon.
- Only for a convex polygon, we will make a right turn always.

The incremental paradigm

- Insert points in P one by one and update the solution at each step.
- We compute the upper hull first. The upper hull contains the convex hull edges that bound the convex hull from above.
- Sort the points in \mathcal{P} from left to right.

The Algorithm

Input: A set P of n points in the plane

The Algorithm

Input: A set P of n points in the plane Output: Convex Hull of P

The Algorithm

Input: A set P of n points in the plane Output: Convex Hull of P
Sort P according to x -coordinate to generate a sequence of points $\mathrm{p}[1], \mathrm{p}[2], \ldots, \mathrm{p}[\mathrm{n}]$;

The Algorithm

Input: A set P of n points in the plane Output: Convex Hull of P
Sort P according to x -coordinate to generate
a sequence of points $\mathrm{p}[1], \mathrm{p}[2], \ldots, \mathrm{p}[\mathrm{n}]$;
Insert $\mathrm{p}[1]$ and then $\mathrm{p}[2]$ in a list $\mathrm{L}_{-} \mathrm{U}$;

The Algorithm

Input: A set P of n points in the plane Output: Convex Hull of P
Sort P according to x -coordinate to generate
a sequence of points $\mathrm{p}[1], \mathrm{p}[2], \ldots, \mathrm{p}[\mathrm{n}]$;
Insert $\mathrm{p}[1]$ and then $\mathrm{p}[2]$ in a list $\mathrm{L}_{-} \mathrm{U}$;
for $\mathrm{i}=3$ to n \{

The Algorithm

Input: A set P of n points in the plane Output: Convex Hull of P
Sort P according to x -coordinate to generate
a sequence of points $\mathrm{p}[1], \mathrm{p}[2], \ldots, \mathrm{p}[\mathrm{n}]$;
Insert p[1] and then $p[2]$ in a list $L_{-} U$;
for $\mathrm{i}=3$ to n \{
Append $\mathrm{p}[\mathrm{i}]$ to $\mathrm{L}_{-} \mathrm{U}$;

The Algorithm

Input: A set P of n points in the plane Output: Convex Hull of P
Sort P according to x-coordinate to generate a sequence of points $\mathrm{p}[1], \mathrm{p}[2], \ldots, \mathrm{p}[\mathrm{n}]$;
Insert $\mathrm{p}[1]$ and then $\mathrm{p}[2]$ in a list $\mathrm{L}_{-} \mathrm{U}$;
for $\mathrm{i}=3$ to n \{
Append p[i] to L_U;
while(L_U contains more than two points AND the last three points in L_U do not make a right turn) \{
\}
\}

The Algorithm

```
Input: \(A\) set \(P\) of \(n\) points in the plane
Output: Convex Hull of \(P\)
Sort P according to x -coordinate to generate
    a sequence of points \(\mathrm{p}[1], \mathrm{p}[2], \ldots, \mathrm{p}[\mathrm{n}]\);
Insert \(\mathrm{p}[1]\) and then \(\mathrm{p}[2]\) in a list \(\mathrm{L}_{-} \mathrm{U}\);
for \(\mathrm{i}=3\) to n \{
    Append p[i] to L_U;
    while(L_U contains more than two points AND
        the last three points in L_U
        do not make a right turn) \{
        Delete the middle of the last
        three points from L_U;
    \}
\}
```


The Algorithm in Action

Analysis

Time complexity

- Sorting takes time $O(n \log n)$.

Analysis

Time complexity

- Sorting takes time $O(n \log n)$.
- The for loop is executed $O(n)$ times.

Analysis

Time complexity

- Sorting takes time $O(n \log n)$.
- The for loop is executed $O(n)$ times.
- For each execution of the for loop, the while loop is encountered once.

Analysis

Time complexity

- Sorting takes time $O(n \log n)$.
- The for loop is executed $O(n)$ times.
- For each execution of the for loop, the while loop is encountered once.
- For each execution of the while loop body, a point gets deleted.

Analysis

Time complexity

- Sorting takes time $O(n \log n)$.
- The for loop is executed $O(n)$ times.
- For each execution of the for loop, the while loop is encountered once.
- For each execution of the while loop body, a point gets deleted.
- A point once deleted, is never deleted again.

Analysis

Time complexity

- Sorting takes time $O(n \log n)$.
- The for loop is executed $O(n)$ times.
- For each execution of the for loop, the while loop is encountered once.
- For each execution of the while loop body, a point gets deleted.
- A point once deleted, is never deleted again.
- So, the total number of executions of the while loop body is bounded by $O(n)$.

Analysis

Time complexity

- Sorting takes time $O(n \log n)$.
- The for loop is executed $O(n)$ times.
- For each execution of the for loop, the while loop is encountered once.
- For each execution of the while loop body, a point gets deleted.
- A point once deleted, is never deleted again.
- So, the total number of executions of the while loop body is bounded by $O(n)$.
- Hence, the total time complexity is $O(n \log n)$.

Outline

IntroductionArea Computation of a Simple PolygonPoint Inclusion in a Simple PolygonConvex Hull: An application of incremental algorithmArt Gallery Problem: A study of combinatorial geometry

Art Gallery Problem

The problem

Given a simple polygon \mathcal{P} of n vertices, find the minimum number of cameras that can guard \mathcal{P}.

Art Gallery Problem

The problem

Given a simple polygon \mathcal{P} of n vertices, find the minimum number of cameras that can guard \mathcal{P}.

Hardness

The above problem is NP-Hard.

Art Gallery Problem

The problem

Given a simple polygon \mathcal{P} of n vertices, find the minimum number of cameras that can guard \mathcal{P}.

Hardness

The above problem is NP-Hard.

Simpler Version

Art Gallery Problem

The problem

Given a simple polygon \mathcal{P} of n vertices, find the minimum number of cameras that can guard \mathcal{P}.

Hardness

The above problem is NP-Hard.

Simpler Version

- Can we find, as a function of n,
 the number of cameras that suffices to guard \mathcal{P} ?

Art Gallery Problem

The problem

Given a simple polygon \mathcal{P} of n vertices, find the minimum number of cameras that can guard \mathcal{P}.

Hardness

The above problem is NP-Hard.

Simpler Version

- Can we find, as a function of n, the number of cameras that suffices to guard \mathcal{P} ?
- Recall \mathcal{P} can be triangulated into $n-2$ triangles. Place a guard in each triangle.

Art Gallery Problem

Can the bound be reduced?

- Place guards at the vertices of the triangles.

Art Gallery Problem

Can the bound be reduced?

- Place guards at the vertices of the triangles.
- We do a 3-coloring of the vertices of \mathcal{T}. Each triangle of \mathcal{T} has a blue, gray and white vertex.

Art Gallery Problem

Can the bound be reduced?

- Place guards at the vertices of the triangles.
- We do a 3-coloring of the vertices of \mathcal{T}. Each triangle of \mathcal{T} has a blue, gray and white vertex.
- Choose the smallest color class to guard \mathcal{P}.

Art Gallery Problem

Can the bound be reduced?

- Place guards at the vertices of the triangles.
- We do a 3-coloring of the vertices of \mathcal{T}. Each triangle of \mathcal{T} has a blue, gray and white vertex.
- Choose the smallest color class to guard \mathcal{P}.

- Hence, $\left\lfloor\frac{n}{3}\right\rfloor$ guards suffice.

Art Gallery Problem

Can the bound be reduced?

- Place guards at the vertices of the triangles.
- We do a 3-coloring of the vertices of \mathcal{T}. Each triangle of \mathcal{T} has a blue, gray and white vertex.
- Choose the smallest color class to guard \mathcal{P}.

- Hence, $\left\lfloor\frac{n}{3}\right\rfloor$ guards suffice.
- But, does a 3-coloring always exist?

Art Gallery Problem

A 3-coloring always exist

Art Gallery Problem

A 3-coloring always exist

- Consider the dual graph $\mathcal{G}_{\mathcal{T}}$ of \mathcal{T} of \mathcal{P}.

Art Gallery Problem

A 3-coloring always exist

- Consider the dual graph $\mathcal{G}_{\mathcal{T}}$ of \mathcal{T} of \mathcal{P}.
- $\mathcal{G}_{\mathcal{T}}$ is a tree as \mathcal{P} has no holes.

Art Gallery Problem

A 3-coloring always exist

- Consider the dual graph $\mathcal{G}_{\mathcal{T}}$ of \mathcal{T} of \mathcal{P}.
- $\mathcal{G}_{\mathcal{T}}$ is a tree as \mathcal{P} has no holes.
- Do a DFS on $\mathcal{G}_{\mathcal{T}}$ to obtain the coloring.

Art Gallery Problem

A 3-coloring always exist

- Consider the dual graph $\mathcal{G}_{\mathcal{T}}$ of \mathcal{T} of \mathcal{P}.
- $\mathcal{G}_{\mathcal{T}}$ is a tree as \mathcal{P} has no holes.
- Do a DFS on $\mathcal{G}_{\mathcal{T}}$ to obtain the coloring.
- Place guards at those vertices that have color of the minimum color class. Hence, $\left\lfloor\frac{n}{3}\right\rfloor$ guards are sufficient to guard \mathcal{P}.

Art Gallery Problem

A 3-coloring always exist

- Consider the dual graph $\mathcal{G}_{\mathcal{T}}$ of \mathcal{T} of \mathcal{P}.
- $\mathcal{G}_{\mathcal{T}}$ is a tree as \mathcal{P} has no holes.
- Do a DFS on $\mathcal{G}_{\mathcal{T}}$ to obtain the coloring.
- Place guards at those vertices that have color of the minimum color class. Hence, $\left\lfloor\frac{n}{3}\right\rfloor$ guards
 are sufficient to guard \mathcal{P}.

Necessity?

Are $\left\lfloor\frac{n}{3}\right\rfloor$ guards sometimes necessary?

Art Gallery Theorem

Final Result

For a simple polygon with n vertices, $\left\lfloor\frac{n}{3}\right\rfloor$ cameras are always sufficient and occasionally necessary to have every point in the polygon visible from at least one of the cameras.

References I

圊 Mark de Berg，Marc van Kreveld，Mark Overmars and Otfried Schwarzkof，Computational Geometry：Algorithms and Applications，Springer， 1997.
B．Chazelle，Triangulating a simple polygon in linear time， Discrete Comput．Geom．，6：485524， 1991.

囯 Herbert Edelsbrunner，Algorithms in Computational Geometry， Springer， 1987.

击 Joseph O＇Rourke，Computational Geometry in C，Cambridge University Press， 1998.
（ Franco P．Preparata and Michael Ian Shamos，Computational Geometry：An Introduction，Springer－Verlag，New York， 1985.

R Michael Ian Shamos，Computational Geometry，PhD thesis， Yale University，New Haven．， 1978.

References II

http://www.algorithmic-solutions.comhttp://www.cgal.orghttp:
//en.wikipedia.org/wiki/Computational_geometry

Thank you!

