Graph Colorings

Niranjan Balachandran

Department of Mathematics
Indian Institute of Technology Bombay.

Research Promotion Workshop on Graph and Geometric Algorithms, Bengal Engineering \& Science University Shibpur.

15 March 2013

An Information-theoretic Problem

Consider a tournament with N participants:

An Information-theoretic Problem

Consider a tournament with N participants:

An Information-theoretic Problem

Question: How many bits do we need to message to indicate the winner of a particular match?

An Information-theoretic Problem

Question: How many bits do we need to message to indicate the winner of a particular match?
Clearly $\log _{2} N$ bits will suffice. Can we do it with fewer?

An Information-theoretic Problem

Question: How many bits do we need to message to indicate the winner of a particular match?
Clearly $\log _{2} N$ bits will suffice. Can we do it with fewer?
Special Case: Each game has the profile:

An Information-theoretic Problem

Question: How many bits do we need to message to indicate the winner of a particular match?
Clearly $\log _{2} N$ bits will suffice. Can we do it with fewer?
Special Case: Each game has the profile:

In this case, 1 bit will suffice.

What is Graph Coloring?

Suppose G is a graph. Let k be a positive integer. Denote $[k]:=\{1,2, \ldots, k\}$.

What is Graph Coloring?

Suppose G is a graph. Let k be a positive integer. Denote $[k]:=\{1,2, \ldots, k\}$.
Definition
k-coloring: $A \operatorname{map} \phi: V(G) \rightarrow[k]$ such that if $u \leftrightarrow v$ in G then $\phi(u) \neq \phi(v)$.

What is Graph Coloring?

Suppose G is a graph. Let k be a positive integer. Denote $[k]:=\{1,2, \ldots, k\}$.
Definition
k-coloring: $A \operatorname{map} \phi: V(G) \rightarrow[k]$ such that if $u \leftrightarrow v$ in G then $\phi(u) \neq \phi(v)$.

Definition
Chromatic number of G : The minimum k such that there is a k-coloring of G.
The Chromatic number is denoted by $\chi(G)$.

Example: The Petersen Graph

Figure: The Petersen Graph

Example: The Petersen Graph

Figure: Petersen Graph with a 3 -coloring.

Example: The Petersen Graph

Figure: Petersen Graph with a 3-coloring. $\chi($ Petersen $)=3$.

The Information-theory Problem

In the tournament problem, consider a graph G with the vertices being the players, and two vertices are adjacent if the corresponding players play a match.

The Information-theory Problem

In the tournament problem, consider a graph G with the vertices being the players, and two vertices are adjacent if the corresponding players play a match.

To communicate the winner of any particular match, $\log _{2} \chi(G)$ bits will suffice.

Simplest cases: Graphs with $\chi(G)=1$ and $\chi(G)=2$

- If $\chi(G)=1$ then G has no edges.

Simplest cases: Graphs with $\chi(G)=1$ and $\chi(G)=2$

- If $\chi(G)=1$ then G has no edges.
- If $\chi(G)=2$ then G is non-trivial bipartite.

Simplest cases: Graphs with $\chi(G)=1$ and $\chi(G)=2$

- If $\chi(G)=1$ then G has no edges.
- If $\chi(G)=2$ then G is non-trivial bipartite.
- Bad news: No 'nice' characterization for graphs of chromatic number k for any $k \geq 3$.

Why no nice characterization?

Niranjan Balachandran

Why no nice characterization?

An upper bound from local considerations

Suppose $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Consider coloring the vertices one at a time, greedily...

An upper bound from local considerations

Suppose $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Consider coloring the vertices one at a time, greedily...

- Proposition

$$
\chi(G) \leq \Delta+1, \text { where } \Delta=\max _{v \in V} d(v)
$$

An upper bound from local considerations

Suppose $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Consider coloring the vertices one at a time, greedily...

- Proposition
$\chi(G) \leq \Delta+1$, where $\Delta=\max _{v \in V} d(v)$.
- Theorem
(Brooks): If $G \neq C_{2 n+1}, K_{n}$ and is connected then $\chi(G) \leq \Delta$.

Lower bounds

- If $H \subset G$ then $\chi(G) \geq \chi(H)$. In particular, $\chi(G) \geq \omega(G)$ where $\omega(G)$ is the size of a maximum clique in G.

Lower bounds

- If $H \subset G$ then $\chi(G) \geq \chi(H)$. In particular, $\chi(G) \geq \omega(G)$ where $\omega(G)$ is the size of a maximum clique in G.
- $\chi(G) \geq \frac{n}{\alpha(G)}$, where $\alpha(G)=$ Size of a maximum independent set in G.

Question: Does there exist a graph G with no triangles (no K_{3} as a subgraph) and with chromatic number, say 1000 ?

Question: Does there exist a graph G with no triangles (no K_{3} as a subgraph) and with chromatic number, say 1000 ?

Figure: The Mycielski construction for $\chi(G)=1,2,3,4$.

Graphs with no small cycles and large chromatic number

Theorem

(Blanche Descartés akaTutte) There exists graphs with girth 6 and chromatic number k for any $k \geq 2$.

Graphs with no small cycles and large chromatic number

Theorem

(Blanche Descartés akaTutte) There exists graphs with girth 6 and chromatic number k for any $k \geq 2$.

Theorem
(Erdős) For any given k, g there exists a graph G with girth greater than g and $\chi(G) \geq k$.

Sketch of proof of Erdős' result

- Pick G randomly, i.e., pick each edge independently, and with probability p.

Sketch of proof of Erdős' result

- Pick G randomly, i.e., pick each edge independently, and with probability p.
- If $N=$ number of cycles of size less than or equal to g, then

$$
\begin{aligned}
& \mathbb{E}(N)=\sum_{i=3}^{g} \frac{n(n-1) \cdots(n-i+1)}{2 i} p^{i}<\frac{g n^{g \theta}}{6} \text { if we have } \\
& p=n^{\theta-1}(\text { for some } 0<\theta<1) .
\end{aligned}
$$

Sketch of proof of Erdős' result

- Pick G randomly, i.e., pick each edge independently, and with probability p.
- If $N=$ number of cycles of size less than or equal to g, then

$$
\begin{aligned}
& \mathbb{E}(N)=\sum_{i=3}^{g} \frac{n(n-1) \cdots(n-i+1)}{2 i} p^{i}<\frac{g n^{g \theta}}{6} \text { if we have } \\
& p=n^{\theta-1}(\text { for some } 0<\theta<1)
\end{aligned}
$$

- In particular, if $\theta<1 / g$ we have $\mathbb{E}(N)=o(n)$, so $\mathbb{P}(N>n / 2)<0.1$, say.

Sketch of proof of Erdős' result (contd.)

$$
\mathbb{P}(\alpha(G) \geq x) \leq\binom{ n}{x}(1-p)^{\binom{x}{2}}<\left(n e^{-(p(x-1) / 2}\right)^{x}<0.1
$$

say, if $x=C n^{1-\theta} \log n$ for a suitable constant C.

Sketch of proof of Erdős' result (contd.)

$$
\mathbb{P}(\alpha(G) \geq x) \leq\binom{ n}{x}(1-p)^{\binom{x}{2}}<\left(n e^{-(p(x-1) / 2}\right)^{x}<0.1
$$

say, if $x=C n^{1-\theta} \log n$ for a suitable constant C.

- Delete from each small cycle an edge to destroy all cycles of size at most g (deleting at most $n / 2$ vertices). The resulting graph G^{*} has $\alpha\left(G^{*}\right)<C n^{1-\theta} \log n$ and has no cycles of size less than or equal to g. Furthermore, $\chi(G) \geq \chi\left(G^{*}\right) \geq \frac{n / 2}{C n^{1-\theta} \log n}$.

The Erdős result actually proves that almost all graphs with $e(G) \sim n^{1+\epsilon}$ for suitable $\epsilon>0$ are very 'close' to such desired graphs!

The Erdős result actually proves that almost all graphs with $e(G) \sim n^{1+\epsilon}$ for suitable $\epsilon>0$ are very 'close' to such desired graphs!

To have witnessed such graphs, for $k=6, g=6$, one would have to consider $n \geq 2^{42}$ (!) This explains why it seemed 'counter-intuitive' that large chromatic number and large girth cannot happen simultaneously.

$\chi(G)$ and local considerations

Question: If we knew the chromatic number of every 'large' subgraph of G, then can we deduce something about $\chi(G)$? Can $\chi(G)$ still be much larger?

$\chi(G)$ and local considerations

Question: If we knew the chromatic number of every 'large' subgraph of G, then can we deduce something about $\chi(G)$? Can $\chi(G)$ still be much larger?

YES, IT CAN BE MUCH, MUCH LARGER!

$\chi(G)$ and local considerations

Question: If we knew the chromatic number of every 'large' subgraph of G, then can we deduce something about $\chi(G)$? Can $\chi(G)$ still be much larger?

YES, IT CAN BE MUCH, MUCH LARGER!

Theorem
(Erdős) Given any $k \geq 3$ there exists $\epsilon=\epsilon(k)>0$ and $n_{0}=n_{0}(\epsilon)$ such that the following holds: For every $n \geq n_{0}$ there exists a graph G on n vertices satisfying

1. For every subset H of at most ϵn vertices $\chi(H) \leq 3$.

$\chi(G)$ and local considerations

Question: If we knew the chromatic number of every 'large' subgraph of G, then can we deduce something about $\chi(G)$? Can $\chi(G)$ still be much larger?

YES, IT CAN BE MUCH, MUCH LARGER!

Theorem
(Erdős) Given any $k \geq 3$ there exists $\epsilon=\epsilon(k)>0$ and $n_{0}=n_{0}(\epsilon)$ such that the following holds: For every $n \geq n_{0}$ there exists a graph G on n vertices satisfying

1. For every subset H of at most ϵn vertices $\chi(H) \leq 3$.
2. $\chi(G) \geq k(!)$.

$\chi(G)$ and local considerations

Question: If we knew the chromatic number of every 'large' subgraph of G, then can we deduce something about $\chi(G)$? Can $\chi(G)$ still be much larger?

YES, IT CAN BE MUCH, MUCH LARGER!

Theorem
(Erdős) Given any $k \geq 3$ there exists $\epsilon=\epsilon(k)>0$ and $n_{0}=n_{0}(\epsilon)$ such that the following holds: For every $n \geq n_{0}$ there exists a graph G on n vertices satisfying

1. For every subset H of at most ϵn vertices $\chi(H) \leq 3$.
2. $\chi(G) \geq k(!)$.

- Proof uses a probabilistic construction.

$\chi(G)$ and local considerations

Question: If we knew the chromatic number of every 'large' subgraph of G, then can we deduce something about $\chi(G)$? Can $\chi(G)$ still be much larger?

YES, IT CAN BE MUCH, MUCH LARGER!

Theorem

(Erdős) Given any $k \geq 3$ there exists $\epsilon=\epsilon(k)>0$ and $n_{0}=n_{0}(\epsilon)$ such that the following holds: For every $n \geq n_{0}$ there exists a graph G on n vertices satisfying

1. For every subset H of at most ϵn vertices $\chi(H) \leq 3$.
2. $\chi(G) \geq k(!)$.

- Proof uses a probabilistic construction.
- Almost every graph (in the random graph model) can be altered mildly to obtain such a G.

Any improvements on Brooks' theorem?

Any improvements on Brooks' theorem?

Theorem
(J.H. Kim) If G has girth at least 5 , then $\chi(G) \leq \frac{\Delta}{\log \Delta}(1+o(1))$ for $\Delta \gg 0$.

Any improvements on Brooks' theorem?

Theorem
(J.H. Kim) If G has girth at least 5 , then $\chi(G) \leq \frac{\Delta}{\log \Delta}(1+o(1))$ for $\Delta \gg 0$.

Theorem
(Johansson) If G is triangle free, then $\chi(G) \leq O\left(\frac{\Delta}{\log \Delta}\right)$.

Any improvements on Brooks' theorem?

Theorem
(J.H. Kim) If G has girth at least 5 , then $\chi(G) \leq \frac{\Delta}{\log \Delta}(1+o(1))$ for $\Delta \gg 0$.

Theorem
(Johansson) If G is triangle free, then $\chi(G) \leq O\left(\frac{\Delta}{\log \Delta}\right)$.
Theorem
(Alon, Krivelevich, Sudakov) Suppose G is locally sparse, i.e., for every vertex v, the number of edges in the subgraph induced by v and its neighbors is at most $\frac{\Delta^{2}}{f}$. Then $\chi(G) \leq O\left(\frac{\Delta}{\log f}\right)$.

Any improvements on Brooks' theorem?

Theorem
(J.H. Kim) If G has girth at least 5 , then $\chi(G) \leq \frac{\Delta}{\log \Delta}(1+o(1))$ for $\Delta \gg 0$.

Theorem
(Johansson) If G is triangle free, then $\chi(G) \leq O\left(\frac{\Delta}{\log \Delta}\right)$.
Theorem
(Alon, Krivelevich, Sudakov) Suppose G is locally sparse, i.e., for every vertex v, the number of edges in the subgraph induced by v and its neighbors is at most $\frac{\Delta^{2}}{f}$. Then $\chi(G) \leq O\left(\frac{\Delta}{\log f}\right)$.

All these proofs heavily rely on probabilistic techniques.

List Colorings of Graphs

Let \mathcal{C} be a set of colors, and for each $v \in V(G)$, let $L_{v} \subset \mathcal{C}$. Let $\mathcal{L}:=\left\{L_{v} \mid v \in V\right\}$.

List Colorings of Graphs

Let \mathcal{C} be a set of colors, and for each $v \in V(G)$, let $L_{v} \subset \mathcal{C}$. Let $\mathcal{L}:=\left\{L_{v} \mid v \in V\right\}$.

A List coloring $\phi_{\mathcal{L}}$ for G is a proper coloring of G with the constraint that $\phi_{\mathcal{L}}(v) \in L_{v}$ for each $v \in V$.

List Colorings of Graphs

Let \mathcal{C} be a set of colors, and for each $v \in V(G)$, let $L_{v} \subset \mathcal{C}$. Let $\mathcal{L}:=\left\{L_{v} \mid v \in V\right\}$.

A List coloring $\phi_{\mathcal{L}}$ for G is a proper coloring of G with the constraint that $\phi_{\mathcal{L}}(v) \in L_{v}$ for each $v \in V$.

Definition

The List Chromatic number of $G\left(\right.$ denoted $\left.\chi_{l}(G)\right):=$ Minimum k for any collection of color lists

$$
\mathcal{L}:=\left\{L_{v} \mid v \in V\right\} \text { satisfying }\left|L_{v}\right| \geq k
$$

there is a list coloring $\phi_{\mathcal{L}}$.
This should hold irrespective of the actual lists themselves.

If all the lists are identical, then the minimum number k is the definition above is simply $\chi(G)$.

If all the lists are identical, then the minimum number k is the definition above is simply $\chi(G)$.

The list chromatic number of a graph can however be larger than the chromatic number.

If all the lists are identical, then the minimum number k is the definition above is simply $\chi(G)$.

The list chromatic number of a graph can however be larger than the chromatic number.

Some Results on List Colorings

Theorem
(Erdős, Rubin, Taylor): $\chi_{l}\left(K_{m, m}\right)>k$ if $m=\Omega\left(k^{2} 2^{k}\right)$.

Some Results on List Colorings

Theorem

(Erdős, Rubin, Taylor): $\chi_{l}\left(K_{m, m}\right)>k$ if $m=\Omega\left(k^{2} 2^{k}\right)$.
Erdős, Rubin, and Taylor characterized all the graphs of list chromatic number 2.

Some Results on List Colorings

Theorem

(Erdős, Rubin, Taylor): $\chi_{l}\left(K_{m, m}\right)>k$ if $m=\Omega\left(k^{2} 2^{k}\right)$.
Erdős, Rubin, and Taylor characterized all the graphs of list chromatic number 2.

Theorem
(Analogue of Brooks' theorem): $\chi_{l}(G) \leq \Delta$ if $G \neq C_{2 n+1}, K_{n}$.

Some Results on List Colorings

Theorem

(Erdös, Rubin, Taylor): $\chi_{l}\left(K_{m, m}\right)>k$ if $m=\Omega\left(k^{2} 2^{k}\right)$.
Erdős, Rubin, and Taylor characterized all the graphs of list chromatic number 2.

Theorem
(Analogue of Brooks' theorem): $\chi_{l}(G) \leq \Delta$ if $G \neq C_{2 n+1}, K_{n}$.
Theorem
(Johansson,Kim): For $\Delta \gg 0, \chi_{l}(G) \leq O\left(\frac{\Delta}{\log \Delta}\right)$ if G is triangle free (resp. girth at least 5).

