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1. S. K. Ghosh and P. P. Goswami, Unsolved problems in
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2010. (Available at http://arxiv.org/abs/1012.5187).
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Let P be a set of n points in the plane.

Two points pi and pj of P are mutually visible if the line segment
pipj does not contain or pass through any other point of P .

In other words, pi and pj are visible if P ∩ pipj = {pi , pj}.

If a point pk ∈ P lies on the segment pipj connecting two points pi
and pj in P , we say that pk blocks the visibility between pi and pj ,
and pk is called a blocker in P .



The visibility graph (also called the point visibility graph) G of P is
defined by associating a vertex vi with each point pi of P such that
(vi , vj) is an undirected edge of G if pi and pj are mutually visible.

If no three points of P are collinear, i.e., there is no blocker in P ,
then G is a complete graph as each pair of points in P is visible.

The visibility graph G can be computed from P in O(n2) time.

1. B. Chazelle, L. J. Guibas and D.T. Lee, The Power of

Geometric Duality, BIT, 25:76-90, 1985.

2. H. Edelsbrunner, J. O’Rourke and R. Seidel, Constructing
Arrangements of Lines and Hyperplanes with Applications,
SIAM Journal on Computing, 15:341-363, 1986.



Visibility Graphs: Recognition, Characterization, and

Reconstruction

Consider the opposite problem of determining if there is a set of
points P whose visibility graph is the given graph G . This problem
is called the visibility graph recognition problem.

Open Problem 1: Given a graph G in adjacency matrix form,
determine whether G is the visibility graph of a set of points P in
the plane.

Identifying the set of properties satisfied by all visibility graphs is
called the visibility graph characterization problem.

Open Problem 2: Characterize visibility graphs of point sets.

The problem of actually drawing one such set of points P whose
visibility graph is the given graph G , is called the visibility graph
reconstruction problem.

Open Problem 3: Given the visibility graph G of a set of points,
draw the points in the plane whose visibility graph is G .



Colouring Visibility Graphs

Consider the problem of colouring the visibility graph G = (V ,E )
of a point set P .

A k-colouring of G is a function f : V → C for some set C of k
colours such that f (v) 6= f (w) for every edge (vi , vj) ∈ E .

If G can be coloured by k colours, G is called k-colourable.

The chromatic number χ(G ) is the minimum k such that G is
k-colourable.

The clique number ω(G ) is the maximum m such G contains a
complete graph of m vertices as a subgraph.

1. J. Kŕa, A. Pór and D. R. Wood, On the Chromatic Number of

the Visibility Graph of a Set of Points in the Plane, Discrete
and Computational Geometry, 34(3):497-506, 2005.
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Let P = {(x , y) : x , y ∈ Z} be the integer lattice. Then
χ(G ) = ω(G ) = 4.

If a point set P ⊆ R
2 can be covered by m lines, then χ(G ) ≤ 2m.
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In this graph, the chromatic number is same as the clique number
but the graph is not a perfect graph as it contains a cycle of five
vertices without chord.

For example, the five lattice points with co-ordinates (2, 5), (1, 3),
(5, 8), (8, 3), (5, 1) form a chordless cycle.

Conjecture: There exists a function f such that χ(G ) ≤ f (ω(G )).
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Visibility graphs of points with ω(G ) ≤ 3 are planar and they
require at most 3 colours.

1. V. Dujmović, D. Eppstein, M. Suderman and D. R. Wood,
Drawings of planar graphs with few slopes and segments,
Computational Geometry: Theory and Applications,
38:194-212, 2007.
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Visibility graphs with ω(G ) = 4 require 5 colours.

Open Problem 4: Prove that every visibility graph with ω(G ) ≤ 4
has χ(G ) ≤ 5.

Open Problem 5: Prove the conjecture for visibility graphs with
ω(G ) = 5.

The conjecture does not hold for visibility graphs with ω(G ) ≥ 6 as
for every k , there is a finite point set y ⊂ R

2 such that χ(G ) ≥ k

and ω(G ) = 6.

1. F. Pfender, Visibility graphs of point sets in the plane,
Discrete and Computational Geometry, 39(1):455-459, 2008.



Cliques in Visibility Graphs
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Consider the situation where the visibility graph G of P is a
complete graph, i.e., there is no three points of P ar collinier. So,
ω(G ) is the size of P .

Though the subgraph of G induced by any subset of vertices is a
clique, the corresponding points X ⊆ P may not form a convex
polygon C .

Does there exists a smallest integer g(k) for every positive integer
k such that any point set P of at least g(k) points in general
position has a subset X of k points that are the vertices of a
convex polygon C?



The existence of the value g(k) runs immediately from the famous
Ramsey theorem.

The best known lower and upper bounds established for g(k) are
2k−2 + 1 ≤ g(k) ≤

(2k−5
k−2

)

+ 2.

1. P. Erdös and G. Szekeres, A combinatorial problem in

geometry, Compositio Mathmatica, 2:463-470, 1935.

2. P. Erdös and G. Szekeres, On some extremum problems in

elementary geometry, Annales Universitatis Scientarium
Budapestinensis de Rolando Etvs Nominatae Sectio
Mathematica, 3-4:53-61, 1961.

3. G. Tóth and P. Valtr, The Erdös-Szekeres theorem: upper

bounds and related results, Combinatorial and Computational
Geometry (Ed. J. E. Goodman, J. Pach and E. Welzl),
52:557-568, Cambridge University Press, Cambridge, 2005.



Even if all points of the subset X are in convex position forming a
convex polygon C , some points of P may lie inside C .

Determining the smallest positive integer h(k) (if it exists) such
that any point set P of at least h(k) points in general position in
the plane has k points that are vertices of an empty convex
polygon C .

For an empty triangle, h(3) = 3.

For an empty quadrilateral, it can be seen that h(4) = 5.

1. H. Harborth, Konvexe Fnfecke in ebenen Punktmengen,
Elemente der Mathematik, 33:116-118, 1978.
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There exists a set of 9 points such that no subset of 5 points forms
an empty convex pentagon. So, h(5) ≥ 10. In fact, h(5) = 10.

For an empty convex hexagon, two bounds are shown:
h(6) ≤ g(9) ≤ 1717 and h(6) ≤ g(25).

1. T. Gerken, Empty convex hexagons in planar point sets,
Discrete and Computational Geometry, 39:239-272, 2008.

2. C. M. Nicolás, The empty hexagon theorem, Discrete and
Computational Geometry, 38:389-397, 2007.



On the other hand, computer experiment shows that h(6) ≥ 30.

The gap between the bounds has been reduced to
h(6) ≤ max{g(8), 400} ≤ 463.

For k ≥ 7, h(k) is not bounded.

1. M. H. Overmars, Finding sets of points without empty convex

6-gons, Discrete and Computational Geometry, 29:153-158,
2003.

2. V.A. Koshelev, On the Erdös - Szekeres problem in

combinatorial geometry, Electronic Notes in Discrete
Mathematics, 29: 175-177, 2007.

3. J.D. Horton, Sets with no empty 7-gons, Canadian
Mathematical Bulletin, 26:482-484, 1983.



Consider the other situation where the visibility graph G of P is
not a complete graph, i.e., there are collinear points in P .

So, the boundary of a convex polygon C formed by a subset of
points X of P may contain collinear points.

For every integers ℓ ≥ 2 and k ≥ 3, there exists a smallest integer
g(k , ℓ) such that any point set P of at least g(k , ℓ) points in the
plane contains (i) ℓ collinear points, or (ii) k points in strictly
convex position.

1. Z. Abel, B. Ballinger, P. Bose, S. Collette, V. Dujmovic, F.
Hurtado, S. Kominers, S. Langerman, A. Por and D. Wood,
Every large point set contains many collinear points or an

empty pentagon, Graphs and Combinatorics, 27(1):47-60,
2011.



A straightforward upper bound on g(k , ℓ) can be derived as
follows:

Assume that P has ℓ− 1 collinear points and at most k − 1 points
in strictly convex position.

Let X ⊆ P be any maximal set of points in strictly convex position.

Since every point of P − X is collinear with two points in X ,
(|X |

2

)

lines cover all points of P and each line can have at most ℓ− 3
points of P − X .

Therefore, |P | ≤
(|X |

2

)

(ℓ− 3) + |X | ≤
(

k
2

)

(ℓ− 3) + k − 1.

If one more point is added to P (i.e., |P | ≤
(

k
2

)

(ℓ− 3) + k)), then
P must contain ℓ collinear points or k points in strictly convex
position.

A tighter upper bound on g(k , ℓ) has also been derived.



Though P with g(k , ℓ) points may have k points in strictly convex
position, the convex polygon C formed by these k points may not
be empty.

Therefore, the visibility graph G of P having g(k , ℓ) points may
not have a clique of size k as some points of P lying inside C may
block the visibility between vertices of C .

Conjecture: For all integers k ≥ 2 and ℓ ≥ 2, there is an integer
h(k , ℓ) such that any point set P of at least h(k , ℓ) points in the
plane contains ℓ collinear points, or k mutually visible points.

1. J. Kŕa, A. Pór and D. R. Wood, On the Chromatic Number of

the Visibility Graph of a Set of Points in the Plane, Discrete
and Computational Geometry, 34(3):497-506, 2005.



The conjecture is trivially true for ℓ ≤ 3 and for all k on any point
set P having k points.

Every point set P of at least max{7, ℓ + 2} points contains ℓ
collinear points or 4 mutually visible points.

The conjecture is also true for k = 5 and for all ℓ.

Open Problem 6: Prove the conjecture for k = 6 or ℓ = 4.



Blockers of Visibility Graphs
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Let P be a set of n points in the plane in general position.

Let Q = (q1, q2, . . . , qj ) be another set of points (or blockers) in
the plane such that (i) P ∩ Q = ∅ and (ii) every segment with
both endpoints in P contains at least one point of Q. Any such set
Q is called a blocking set for P .

Observe that (i) there is no edge in the visibility graph of P ∪Q

that connects two points of P and (ii) a blocker may block several
pairs of visible points.

If all points of P are collinear, then |P | − 1 blockers are necessary
and sufficient.

What is the minimum size b(n) of blocking set Q for P?



It is obvious that b(n) ≥ n − 1. A better lower bound
b(n) ≥ 2n − 3 follows form a triangulation of P . The bound has
been improved to b(n) ≥ (258 − o(1))n.

Obvious upper bound on b(n) is b(n) ≤
(

n
2

)

. The bound has been

improved to b(n) ≤ n2c
√
log n, where c is an absolute constant.

Open Problem 7: Prove that as n → ∞, b(n)
n

→ ∞.

1. A. Dumitrescu and J. Pach and G. Tóth, A note on blocking

visibility between points, Geombinatorics, 19:67-73, 2009.

2. Y. V. Stanchescu, Planar sets containing no three collinear

points and non-averaging sets of integers, Discrete
Mathematics, 256:387-395, 2002.

3. J. Pach, Midpoints of segments induced by a point set,
Geombinatorics, 13:98-105, 2003.
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Let P be a set of points in the plane with some collinear points.

Assign k ≥ 2 colours to points of P such that (i) if two points are
mutually visible in P , assign different colours to them, and (ii) if
two points are not visible due to some collinear points in P , assign
the same colour to both of them.

Any set of points that admits such a colouring with k colours (for
a fixed k) is called a k-blocked point set.

1. G. Aloupis, B. Ballinger, S. Collette, S. Langerman, A. Pór
and D.R. Wood, Blocking coloured point sets, Proceedings of
the 26th European Workshop Computational Geometry, pp.
29-32, 2010.
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At most three points are collinear in every k-blocked point set.

Each colour class in a k-blocked point set is in a general position.

Conjecture: For each integer k , there is an integer n such that
every k-blocked point set has at most n points.

Every 2-blocked point set has at most 3 points.

Every 3-blocked point set has at most 6 points.

Every 4-blocked point set has at most 12 points.

Conjecture: Every k-blocked point set has O(k2) points.

Conjecture: In every k-blocked point set, there are at most k
points in each colour class.



Obstacle Representation of Visibility Graphs

Let P = (p1, p2, . . . , pn) be a set of points in the plane.

Let Q = (Q1,Q2, . . . ,Qh) be a set of simple polygons in the plane
called obstacles.

Construct the visibility graph G such that every point pi of P is
represented as a vertex vi of G , and two vertices vi and vj of G are
connected by an edge in G if and only if the line segment pipj does
not intersect any obstacle Qj for all j .

We call the pair (P ,Q) as obstacle representation of G .

Given a visibility graph G , the problem of obstacle representation is
to draw every vertex vi of G as a point pi in the plane and draw
obstacles in such a way that every segment pipj intersects an
obstacle if and only if (vi , vj) is not an edge in G .

The obstacle number is the minimum number of obstacles required
in any obstacle representation of G , and is bounded above by

(

n
2

)

.



Open Problem 8: Is the obstacle number of a graph with n vertices
bounded above by a linear function of n?

Open Problem 9: Improve the present lower bound O(n/ log2 n) of
the obstacle number of a graph with n vertices.

Open Problem 10: For h > 1, what is the smallest number of
vertices of a graph with obstacle number h?

Open Problem 11: Does every planar graph have obstacle number
1?

1. H. Alpert, C. Koch and J. D. Laison, Obstacle numbers of

graphs, Discrete and Computational Geometry, 44:223–244,
2010.

2. P. Mukkamala, J. Pach, and Deniz Sarioz, Graphs with large

obstacle numbers, Proceedings of the 36th International
Workshop on Graph Theoretic Concepts in Computer Science,
Lecture Notes in Computer Science, vol. 6410, pp. 292-303,
Springer, 2010.



Concluding remarks

In this talk we have presented an overview of results on visibility
graph theory for points and suggested several open problems.
Hopefully, many more results will come which will enrich this
fascinating area of geometric graph theory.


