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A polygon P is defined as a closed region in the plane
bounded by a finite set of line segments (called edges of P)
such that there exists a path between any two points of P
which does not intersect any edge of P.

If the boundary of P consists of two or more cycles, then P is
called a polygon with holes. Otherwise, P is called a simple
polygon or a polygon without holes.
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Two points u and v in a polygon P are said to be visible if the
line segment joining u and v lies entirely inside P.

Using this definition of visibility, a path in P can be defined as
a sequence of line segments such that the two endpoints of
every line segment are mutually visible, i.e., every such line
segment lies totally inside P.

S. K. Ghosh, Visibility Algorithms in the Plane, Cambridge
University Press, Cambridge, UK, 2007.
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Definitions and properties
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The Euclidean shortest path (denoted as SP(s, t)) between
two points s and t in a polygon P is the path of smallest
length between s and t lying totally inside P.

Let SP(s, t) = (s, u1, u2,..., uk , t). Then, (i) SP(s, t) is a
simple path, (ii) u1, u2,..., uk are vertices of P and (iii) for all
i , ui and ui+1 are mutually visible in P. SP(s, t) is outward
convex at every vertex on the path.
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Computing SP(s, t)

Ts

Tt

The dual graph of a triangulation of a simple polygon is a tree.

SP(s, t) passes only through the triangles in the path from Ts

and Tt in the dual tree.

B. Chazelle. Triangulating a simple polygon in linear time,
Discrete and Computational Geometry, 6(1991), 485-529.
Running time: O(n).
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Let (u, v , z) be a triangle such that SP(s, u) and SP(s, v)
have already been computed. Then SP(s, z) can be computed
by drawing tangent from z to SP(s, u) or SP(s, v).

Open Problem: Can SP(s, t) be computed in a simple
polygon in O(n) time without triangulation?

D. Lee and F. Preparata, Euclidean shortest paths in the
presence of rectilinear boundaries, Networks, 14 (1984),
303-410. Running time: O(n).
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Definitions and properties
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A minimum link path connecting two points s and t inside a
polygon P with or without holes (denoted by MLP(s, t)) is a
polygonal path with the smallest number of turns or links.

S. Suri, A linear time algorithm for minimum link paths inside
a simple polygon, Computer Graphics, Vision, and Image
Processing, 35 (1986), 99-110. Running time: O(n).
S. K. Ghosh, Computing the visibility polygon from a convex
set and related problems, Journal of Algorithms, 12 (1991),
75-95. Running time: O(n).
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Computing MLP(s, t): Suri’s algorithm
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V (1) is the visibility polygon of s.

For i > 1, V (i) is the set of points of P that are visible from
some point on a window of V (i − 1).

So, number of links (called link distance) required from s to
any point of V (i) is i .

The turing points of MLP(s,t) are on the windows of V (i) for
all i .
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Computing MLP(s, t): Ghosh’s algorithm

Ghosh’s algorithm transforms SP(s, t) into MLP(s, t) in O(n)
time.
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Let SP(s, t) = (s, u1, ..., uk , t).

An edge ujuj−1 of SP(s, t) is called eave if uj−2 and uj+1 lie
on the opposite sides of the line passing through uj and uj−1.
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Ghosh’s algorithm
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If an edge ukuk+1 of SP(s, t) is a sub-segment of a link in a
link path, we say that the link path contains ukuk+1.

There exists a minimum link path between s and t that
contains all eaves of SP(s, t).
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Ghosh’s algorithm
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Decompose P into sub-polygons by extending each eave from
both ends to the boundary of P.

If two consecutive extensions intersect at a point z , then z is
a turning point of MLP(s, t).

Construct minimum link paths connecting the extensions of
every pair of consecutive eaves on SP(s, t) to form MLP(s, t).
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Ghosh’s algorithm
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Consider one such sub-polygon (say, Pij) between the
non-intersecting extensions of two consecutive eaves uiui+1

and uj−1uj of SP(s, t).

Let Lij denote a minimum link path from a point on ui+1wi+1

to some point on uj−1wj−1.

A link path is called convex if it makes only left or only right
turns at every turning point in the path.

A minimum link path Lij is a convex path inside Pij .
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The segment zup is called the left tangent (or right tangent)
of z at the vertex up ∈ SP(ui+1, uj−1) if zup lies inside Pij

and z lies to the right of −−−−→up−1up (respectively, −−−−→upup−1) and to
the left of −−−−→upup+1 (respectively, −−−−→up+1up).

If a point z ∈ Pij is on a convex path between ui+1wi+1 and
uj−1wj−1 inside Pij , then z has both left and right tangents.
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Ghosh’s algorithm
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Let Rij denote the set of all points of Pij such that every point
of Rij has both left and right tangents to SP(ui , uj).

Rij is called complete visibile region of Pij and it can be
computed in O(n) time.

Choose an appropriate point z1 on ui+1wi+1.

Draw the right tangent from z1 to SP(ui+1, uj−1) and extend
the tangent till it meets the boundary of Rij at some point z2.
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Ghosh’s algorithm
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Again, draw the right tangent from z2 to SP(ui+1, uj−1) and
extend the tangent till it meets the boundary of Rij at some
point z3.

Repeat this process of construction till a point zq is found on
uj−1wj−1.

Thus, the greedy path z1z2, z2z3,...,zq−1zq is constructed
between ui+1wi+1 and uj−1wj−1.

The greedy path z1z2, z2z3, ..., zq−1zq is a minimum link path
inside Pij .
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Ghosh’s algorithm

Overall Algorithm:

Compute SP(s, t) using the algorithm of Lee and Preparata.
Decompose P into sub-polygons by extending each eave of
SP(s, t) from both ends to the boundary of P. Also extend
the first and the last edges of SP(s, t).
In each sub-polygon of P, construct the greedy path between
the extensions of the eaves.
Connect the greedy paths using the extension of the eaves to
form a minimum link path between s and t.

SP(s, t) can be transformed to MLP(s, t) in O(n) time.

SP(s, t) and MLP(s, t) belong to the same homotopy class.

L. Guibas, J. Hershberger, J. Mitchell, and J. Snoeyink,
Approximating polygons and subdivisions with minimum-link
paths, International Journal of Computational Geometry and
Applications, 3:383-415, 1993.
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Indirect visibility

P
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Assume that all edges of P reflect light like mirrors.

Some points of P, not directly visible or illuminated from s,
may become visible due to one or more reflections on the
edges of P.

As per the standard law of reflection, reflection of a light ray
at a point is called specular if the angle of incidence is the
same as the angle of reflection.

There is another type of reflection of light called diffuse
reflection, where a light ray incident at a point is reflected in
all possible interior directions.
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Indirect visibility

So, specular reflections can be viewed as a special type of
diffuse reflections.

We assume that the light ray incident at a vertex is absorbed
and not reflected.

S. K. Ghosh, P. P. Goswami, A. Maheshwari, S. C. Nandy, S.
P. Pal and Swami Sarvattomananda, Algorithms for
computing diffuse reflection paths in polygons, The Visual
Computer, vol. 28, no. 12, pp. 1229-1237, 2012.
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Visibility with multiple reflections

Visibility with multiple reflections arises in three-dimensional
scenarios naturally where pixels of a screen are rendered to
generate a realistic image.

The rendering process needs accumulated illumination
information from possible incident directions at each reflection
point.

Since a smaller number of reflections would contribute light
more intensely, computing paths of light rays reachable by the
minimum number of reflections are naturally important in
illumination modeling.

Our motivation is the computation of such a path with the
minimum number of diffuse reflections in polynomial time
from a point light source s to any point t within a polygon P.

M. de Berg, Ray shooting, depth orders and hidden surface
removal, Lecture Notes in Computer Science, vol. 703,
Springer, Berlin, 1993.



Visibility in Polygons Euclidean Shortest Paths Minimum Link Paths Optimal Diffused Reflection Paths

Visibility with multiple reflections

Visibility with multiple reflections arises in three-dimensional
scenarios naturally where pixels of a screen are rendered to
generate a realistic image.

The rendering process needs accumulated illumination
information from possible incident directions at each reflection
point.

Since a smaller number of reflections would contribute light
more intensely, computing paths of light rays reachable by the
minimum number of reflections are naturally important in
illumination modeling.

Our motivation is the computation of such a path with the
minimum number of diffuse reflections in polynomial time
from a point light source s to any point t within a polygon P.

M. de Berg, Ray shooting, depth orders and hidden surface
removal, Lecture Notes in Computer Science, vol. 703,
Springer, Berlin, 1993.



Visibility in Polygons Euclidean Shortest Paths Minimum Link Paths Optimal Diffused Reflection Paths

Visibility with multiple reflections

Visibility with multiple reflections arises in three-dimensional
scenarios naturally where pixels of a screen are rendered to
generate a realistic image.

The rendering process needs accumulated illumination
information from possible incident directions at each reflection
point.

Since a smaller number of reflections would contribute light
more intensely, computing paths of light rays reachable by the
minimum number of reflections are naturally important in
illumination modeling.

Our motivation is the computation of such a path with the
minimum number of diffuse reflections in polynomial time
from a point light source s to any point t within a polygon P.

M. de Berg, Ray shooting, depth orders and hidden surface
removal, Lecture Notes in Computer Science, vol. 703,
Springer, Berlin, 1993.



Visibility in Polygons Euclidean Shortest Paths Minimum Link Paths Optimal Diffused Reflection Paths

Visibility with multiple reflections

Visibility with multiple reflections arises in three-dimensional
scenarios naturally where pixels of a screen are rendered to
generate a realistic image.

The rendering process needs accumulated illumination
information from possible incident directions at each reflection
point.

Since a smaller number of reflections would contribute light
more intensely, computing paths of light rays reachable by the
minimum number of reflections are naturally important in
illumination modeling.

Our motivation is the computation of such a path with the
minimum number of diffuse reflections in polynomial time
from a point light source s to any point t within a polygon P.

M. de Berg, Ray shooting, depth orders and hidden surface
removal, Lecture Notes in Computer Science, vol. 703,
Springer, Berlin, 1993.



Visibility in Polygons Euclidean Shortest Paths Minimum Link Paths Optimal Diffused Reflection Paths

Visibility with multiple reflections

Visibility with multiple reflections arises in three-dimensional
scenarios naturally where pixels of a screen are rendered to
generate a realistic image.

The rendering process needs accumulated illumination
information from possible incident directions at each reflection
point.

Since a smaller number of reflections would contribute light
more intensely, computing paths of light rays reachable by the
minimum number of reflections are naturally important in
illumination modeling.

Our motivation is the computation of such a path with the
minimum number of diffuse reflections in polynomial time
from a point light source s to any point t within a polygon P.

M. de Berg, Ray shooting, depth orders and hidden surface
removal, Lecture Notes in Computer Science, vol. 703,
Springer, Berlin, 1993.



Visibility in Polygons Euclidean Shortest Paths Minimum Link Paths Optimal Diffused Reflection Paths

Previous results

B. Aronov, A. Davis, T. Dey, S.P. Pal and D. Prasad,
Visibility with multiple reflections, Discrete and
Computational Geometry, vol. 20, pp. 61-78, 1998.

B. Aronov, A. Davis, T. Dey, S. P. Pal and D. Prasad,
Visibility with one reflection, Discrete and Computational
Geometry, vol. 19, pp. 553-574, 1998.

D. Prasad, S. P. Pal and T. Dey, Visibility with multiple
diffuse reflections, Computational Geometry: Theory and
Applications, vol. 10, pp. 187-196, 1998.

A. R. Davis, Visibility with reflection in triangulated surfaces,
PhD thesis, Polytechnic University, 1998.

S.P. Pal, S. Brahma and D. Sarkar, A linear worst-case lower
bound on the number of holes in regions visible due to
multiple diffuse reflections, Journal of Geometry, vol. 81, pp.
5-14, 2004.



Visibility in Polygons Euclidean Shortest Paths Minimum Link Paths Optimal Diffused Reflection Paths

Previous results

B. Aronov, A. Davis, T. Dey, S.P. Pal and D. Prasad,
Visibility with multiple reflections, Discrete and
Computational Geometry, vol. 20, pp. 61-78, 1998.

B. Aronov, A. Davis, T. Dey, S. P. Pal and D. Prasad,
Visibility with one reflection, Discrete and Computational
Geometry, vol. 19, pp. 553-574, 1998.

D. Prasad, S. P. Pal and T. Dey, Visibility with multiple
diffuse reflections, Computational Geometry: Theory and
Applications, vol. 10, pp. 187-196, 1998.

A. R. Davis, Visibility with reflection in triangulated surfaces,
PhD thesis, Polytechnic University, 1998.

S.P. Pal, S. Brahma and D. Sarkar, A linear worst-case lower
bound on the number of holes in regions visible due to
multiple diffuse reflections, Journal of Geometry, vol. 81, pp.
5-14, 2004.



Visibility in Polygons Euclidean Shortest Paths Minimum Link Paths Optimal Diffused Reflection Paths

Previous results

B. Aronov, A. Davis, T. Dey, S.P. Pal and D. Prasad,
Visibility with multiple reflections, Discrete and
Computational Geometry, vol. 20, pp. 61-78, 1998.

B. Aronov, A. Davis, T. Dey, S. P. Pal and D. Prasad,
Visibility with one reflection, Discrete and Computational
Geometry, vol. 19, pp. 553-574, 1998.

D. Prasad, S. P. Pal and T. Dey, Visibility with multiple
diffuse reflections, Computational Geometry: Theory and
Applications, vol. 10, pp. 187-196, 1998.

A. R. Davis, Visibility with reflection in triangulated surfaces,
PhD thesis, Polytechnic University, 1998.

S.P. Pal, S. Brahma and D. Sarkar, A linear worst-case lower
bound on the number of holes in regions visible due to
multiple diffuse reflections, Journal of Geometry, vol. 81, pp.
5-14, 2004.



Visibility in Polygons Euclidean Shortest Paths Minimum Link Paths Optimal Diffused Reflection Paths

Previous results

B. Aronov, A. Davis, T. Dey, S.P. Pal and D. Prasad,
Visibility with multiple reflections, Discrete and
Computational Geometry, vol. 20, pp. 61-78, 1998.

B. Aronov, A. Davis, T. Dey, S. P. Pal and D. Prasad,
Visibility with one reflection, Discrete and Computational
Geometry, vol. 19, pp. 553-574, 1998.

D. Prasad, S. P. Pal and T. Dey, Visibility with multiple
diffuse reflections, Computational Geometry: Theory and
Applications, vol. 10, pp. 187-196, 1998.

A. R. Davis, Visibility with reflection in triangulated surfaces,
PhD thesis, Polytechnic University, 1998.

S.P. Pal, S. Brahma and D. Sarkar, A linear worst-case lower
bound on the number of holes in regions visible due to
multiple diffuse reflections, Journal of Geometry, vol. 81, pp.
5-14, 2004.



Visibility in Polygons Euclidean Shortest Paths Minimum Link Paths Optimal Diffused Reflection Paths

Previous results

B. Aronov, A. Davis, T. Dey, S.P. Pal and D. Prasad,
Visibility with multiple reflections, Discrete and
Computational Geometry, vol. 20, pp. 61-78, 1998.

B. Aronov, A. Davis, T. Dey, S. P. Pal and D. Prasad,
Visibility with one reflection, Discrete and Computational
Geometry, vol. 19, pp. 553-574, 1998.

D. Prasad, S. P. Pal and T. Dey, Visibility with multiple
diffuse reflections, Computational Geometry: Theory and
Applications, vol. 10, pp. 187-196, 1998.

A. R. Davis, Visibility with reflection in triangulated surfaces,
PhD thesis, Polytechnic University, 1998.

S.P. Pal, S. Brahma and D. Sarkar, A linear worst-case lower
bound on the number of holes in regions visible due to
multiple diffuse reflections, Journal of Geometry, vol. 81, pp.
5-14, 2004.



Visibility in Polygons Euclidean Shortest Paths Minimum Link Paths Optimal Diffused Reflection Paths

Previous results

B. Aronov, A. Davis, J. Iacono and A.S.C. Yu, The complexity
of diffuse reflections in a simple polygon, Proceedings of the
7th Latin American Symposium on Theoretical Informatics.
LNCS, vol. 3887, pp. 93-104. Springer, Berlin, 2006.

G. Barequet, S. Cannon, E. Fox-Epstein, B. Hescott, D. L.
Souvaine, C. D. Toth, and A. Winslow, Diffuse reflections in
simple polygons, Electronic Notes in Discrete Mathematics,
vol. 44, pp. 345-350, 2013.

A. Khan, S. P. Pal, M. Aanjaneya, A. Bishnu, S. C. Nandy,
Diffuse reflection diameter and radius for convex-
quadrilateralizable polygons, Discrete Applied Mathematics,
vol. 161(10-11), pp. 1496-1505, 2013.

A. Bishnu, S. K. Ghosh, P. P. Goswami, S. P. Pal and Swami
Sarvattomananda, An Algorithm for Computing Constrained
Reflection Paths in Simple Polygons. CoRR abs/1304.4320,
2014.



Visibility in Polygons Euclidean Shortest Paths Minimum Link Paths Optimal Diffused Reflection Paths

Previous results

B. Aronov, A. Davis, J. Iacono and A.S.C. Yu, The complexity
of diffuse reflections in a simple polygon, Proceedings of the
7th Latin American Symposium on Theoretical Informatics.
LNCS, vol. 3887, pp. 93-104. Springer, Berlin, 2006.

G. Barequet, S. Cannon, E. Fox-Epstein, B. Hescott, D. L.
Souvaine, C. D. Toth, and A. Winslow, Diffuse reflections in
simple polygons, Electronic Notes in Discrete Mathematics,
vol. 44, pp. 345-350, 2013.

A. Khan, S. P. Pal, M. Aanjaneya, A. Bishnu, S. C. Nandy,
Diffuse reflection diameter and radius for convex-
quadrilateralizable polygons, Discrete Applied Mathematics,
vol. 161(10-11), pp. 1496-1505, 2013.

A. Bishnu, S. K. Ghosh, P. P. Goswami, S. P. Pal and Swami
Sarvattomananda, An Algorithm for Computing Constrained
Reflection Paths in Simple Polygons. CoRR abs/1304.4320,
2014.



Visibility in Polygons Euclidean Shortest Paths Minimum Link Paths Optimal Diffused Reflection Paths

Previous results

B. Aronov, A. Davis, J. Iacono and A.S.C. Yu, The complexity
of diffuse reflections in a simple polygon, Proceedings of the
7th Latin American Symposium on Theoretical Informatics.
LNCS, vol. 3887, pp. 93-104. Springer, Berlin, 2006.

G. Barequet, S. Cannon, E. Fox-Epstein, B. Hescott, D. L.
Souvaine, C. D. Toth, and A. Winslow, Diffuse reflections in
simple polygons, Electronic Notes in Discrete Mathematics,
vol. 44, pp. 345-350, 2013.

A. Khan, S. P. Pal, M. Aanjaneya, A. Bishnu, S. C. Nandy,
Diffuse reflection diameter and radius for convex-
quadrilateralizable polygons, Discrete Applied Mathematics,
vol. 161(10-11), pp. 1496-1505, 2013.

A. Bishnu, S. K. Ghosh, P. P. Goswami, S. P. Pal and Swami
Sarvattomananda, An Algorithm for Computing Constrained
Reflection Paths in Simple Polygons. CoRR abs/1304.4320,
2014.



Visibility in Polygons Euclidean Shortest Paths Minimum Link Paths Optimal Diffused Reflection Paths

Previous results

B. Aronov, A. Davis, J. Iacono and A.S.C. Yu, The complexity
of diffuse reflections in a simple polygon, Proceedings of the
7th Latin American Symposium on Theoretical Informatics.
LNCS, vol. 3887, pp. 93-104. Springer, Berlin, 2006.

G. Barequet, S. Cannon, E. Fox-Epstein, B. Hescott, D. L.
Souvaine, C. D. Toth, and A. Winslow, Diffuse reflections in
simple polygons, Electronic Notes in Discrete Mathematics,
vol. 44, pp. 345-350, 2013.

A. Khan, S. P. Pal, M. Aanjaneya, A. Bishnu, S. C. Nandy,
Diffuse reflection diameter and radius for convex-
quadrilateralizable polygons, Discrete Applied Mathematics,
vol. 161(10-11), pp. 1496-1505, 2013.

A. Bishnu, S. K. Ghosh, P. P. Goswami, S. P. Pal and Swami
Sarvattomananda, An Algorithm for Computing Constrained
Reflection Paths in Simple Polygons. CoRR abs/1304.4320,
2014.



Visibility in Polygons Euclidean Shortest Paths Minimum Link Paths Optimal Diffused Reflection Paths

Computing diffuse reflection paths

A path between two points inside P is called a diffuse
reflection path if all turning points of the path lie on edges of
P.

A diffuse reflection path between two points is said to be
optimal if it has the minimum number of reflections among all
diffuse reflection paths between them.

Problem: Given a polygon P and two internal points s and t
inside P, compute an optimal diffuse reflection path between
s to t in polynomial time.

Status: There is no polynomial time algorithm known for the
above problem. On the other hand, the problem is also not
known to be NP-hard.
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Computing diffuse reflection paths

Results: For this problem, we present three different
algorithms which produce sub-optimal diffused reflection paths
in polynomial time:

The first algorithm uses a greedy method with the help of
Euclidean shortest paths.
The second algorithm uses a transformation of a minimum link
path.
The third algorithm uses the edge-edge visibility graph of P.

S. K. Ghosh, P. P. Goswami, A. Maheshwari, S. C. Nandy, S.
P. Pal and Swami Sarvattomananda, Algorithms for
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Compute the Euclidean shortest path (u0, u1, . . . , uj), where
s = u0 and t = uj .

Extend the first edge u0u1 from u1 meeting the boundary of P
at some point w1.

Treating w1 as s, compute the next link w1w2 by extending
the first edge of SP(w1, t) to the boundary of P.

Repeat this process until wk is computed such that wk is
directly visible from t.

The greedy path (sw1,w1w2, . . . ,wk−1wk ,wkt) is a diffuse
reflection path from s to t. Note that the path is simple.

The greedy path can be computed in O(n2) time.
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Instead of computing shortest paths repeatedly, the algorithm
computes the shortest path tree rooted at t, and then
constructs the shortest path map by extending the edges of
the tree.

Observe that the next vertex (say, vi ) of wi−1 in the shortest
path from wi−1 to t is the vertex of the triangle in the
shortest path map which contains wi−1.

The greedy path can be computed in O(n + k log n) time.

J. Hershberger, Finding the visibility graph of a polygon in
time proportional to its size, Algorithmica 4:141-155, 1989.
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Worst case ratio
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The number of links in the greedy path can be at most
(n − 1)/2 times that of an optimal diffuse reflection path.



Visibility in Polygons Euclidean Shortest Paths Minimum Link Paths Optimal Diffused Reflection Paths

Transforming a MLP(s, t)
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If all turning points of a MLP(s, t) lie on edges of P, then the
path is an optimal diffuse reflection path.
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For every turning point zi not lying on any edge of P, extend
zizi+1 from zi to the boundary of P meeting it at a point ai .

Similarly, extend zizi−1 from zi to the boundary of P meeting
it at a point ci .

If the segment aici lies inside P, then the diffuse reflection
path is (sz1, z1z2, . . . , zi−1ci , ciai , aizi+1, . . . , zm−1zm, zmt).
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Transforming a MLP(s, t)

ai
ci

zi+1

mlp(s, t)

zi

t

zi−1

s

P

SP (s, t)

Otherwise, ai and ci are connected by a greedy path to
construct a diffuse reflection path.

The greedy paths connecting every pair of ai and ci lie in
disjoint regions of P.

Therefore, a MLP(s, t) can be transformed into a diffuse
reflection path from s to t in O(n + k log n) time.
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Worst case ratio
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Let m′ be the number of turning points of the MLP(s, t) not
lying on the boundary of P.

So, the number of links in the greedy path can be at most
n − 2m′ + 2m′ −m − 1 because

the greedy link path from ci to ai does not pass through one
vertex of the edge containing ci and another vertex of the edge
containing ai ,
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the last two links for each of the m′ greedy paths do not pass
through vertices of P, and

the number of vertices in the clockwise boundary of P from vi
to vl (including vi and vl) must be at least 2 + m− 1 as m− 1
links of the minimum link path pass through distinct vertices
the shortest path.

Therefore, the diffuse reflection path has at most
n −m − 1 + m = n − 1 links.

So, the number of links in the transformed path is at most
(n − 1)/m times that of an optimal diffuse reflection path.
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Combinatorial approach

Two edges of P are said to be weakly visible if some internal
point of one edge is visible from an internal point of the other
edge.

The edge-edge visibility graph Ge of P is a graph with nodes
Ve representing all edges of P, and arcs between nodes that
correspond to weakly visible pairs of edges in P.
Construct the edge-edge visibility graph Ge of P, and add two
nodes representing s and t in Ve .
The node s (or, t) is connected by arcs in Ge to those nodes
in Ve whose corresponding edges in P are partially or totally
visible from s (respectively, t).
Between s and t, the number of reflections in any diffuse
reflection path in P is at least the minimum number of edges
of P in a path between s and t in Ge .

J. ORourke and I. Streinu, The vertex edge visibility graph of
a polygon, Computational Geometry, 10: 105-120, 1998.
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Combinatorial approach
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Compute the shortest path from s to t in Ge using BFS.

Let g1, g2, . . . , gk−1 be the sequence of edges of P
corresponding to the nodes of Ve in the path.

Locate a pair of internal points zi ∈ gi and ui ∈ gi+1, for all i ,
such that the segment ziui lies inside P.

Let u0 be a point in g1 visible from s. Let zk−1 be a point in
gk−1 visible from t.

So, a sequence of links su0, z1u1, . . . , zk−2uk2 , zk−1t can be
constructed.
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corresponding to the nodes of Ve in the path.

Locate a pair of internal points zi ∈ gi and ui ∈ gi+1, for all i ,
such that the segment ziui lies inside P.

Let u0 be a point in g1 visible from s. Let zk−1 be a point in
gk−1 visible from t.

So, a sequence of links su0, z1u1, . . . , zk−2uk2 , zk−1t can be
constructed.
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Combinatorial approach
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If zi = ui−1, for all i , then we have a diffuse reflection path
sz1, z1z2, . . . , zk−1t with the minimum number of reflections.
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Combinatorial approach
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Otherwise, for every zi 6= ui−1, locate a point z ′i on an edge ei
of P such that all points of gi are visible from z ′i , and then
add two links ui−1z ′i and z ′i zi to connect ui−1 with zi .

The point z ′i can be located by extending the edge gi to the
nearest polygonal edge ei and then choosing a point arbitrary
close to the intersection point.

Hence, (su0, u0z ′1, z ′1z1, z1u1, . . . , uk−2z ′k−1, z ′k−1zk−1, zk−1t)
becomes a diffuse reflection path between s and t.

This path can be at most three times that of an optimal
diffusion reflection path.
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Combinatorial approach

All pairs of weakly visible edges of P can be located in
O(n log n + E ) time (i) by computing the visibility graph of
vertices of P and (ii) by traversing the visibility graph using
funnel sequences with polygons edges as bases of the funnels.

In addition, links connecting pairs of weakly visible edges of P
can also be constructed using funnel sequences in O(n2) time.

By traversing the funnel sequences again, edges g1, g2, . . . ,
gk−1 can be extended to the respective nearest edges in P to
locate points z ′1, z ′2, . . . , z ′k−1 respectively in O(n2) time.

Hence, the entire diffusion reflection path can be computed in
O(n2) time.

S. K. Ghosh and D. M. Mount, An output-sensitive algorithm
for computing visibility graphs, SIAM Journal on Computing,
vol. 20, pp. 888-910, 1991.
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Remarks on diffused reflection paths

We have presented three polynomial time algorithms for
computing diffuse reflection paths from a light source s to a
target point t inside P which produce sub-optimal paths.

Observe that the combinatorial approach gives a better bound
but it does not give a simple or structured path. On the other
hand, the greedy approach gives a simple and structured path
but it does not give a good bound.

It will be interesting to design an algorithm, possibly by
transforming a MLP(s, t)), giving a simple and structured
path as well as giving a good bound.

Finally, it is open whether an optimal path can be computed
for this problem in a low-order polynomial time.
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Concluding remarks

Our algorithms demonstrate how geometric and topological
properties like convexity, simplicity, complete visibility,
homotopy, etc., are crucial in computing, transforming, and
understanding different paths inside simple polygons that are
optimal or close to optimal.

THANK YOU
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