
Visibility-based Robot Path Planning

Subir Kumar Ghosh

School of Technology & Computer Science
Tata Institute of Fundamental Research

Mumbai 400005, India
ghosh@tifr.res.in



Overview

1. Computing the configuration space

2. Computing Euclidean shortest paths

3. Computing minimum link paths

4. Computing bounded curvature paths

5. Exploring an unknown polygon: Continuous visibility

6. Exploring an unknown polygon: Discrete visibility

7. Exploring an unknown polygon: Bounded visibility



Collision-free Path
One of the main problems in robotics, called robot path planning,
is to find a collision-free path amidst obstacles for a robot from its
starting position to its destination.
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Above figures show the Minkowski sums of P and T with s as the
reference point (under translation).
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Computing configuration space

Configuration SpaceWork Space
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The configuration space can be computed using Minkowski sum.

The problem of computing collision-free path of a rectangle in the
actual space is now reduced to that of a point in the free
configuration space.

1. T. Lozano-Perez and M. A. Wesley, An algorithm for planning
collision-free paths among polyhedral
obstacles, Communication of ACM, 22 (1979), 560-570.



Computing Euclidean shortest paths

The Euclidean shortest path (denoted as SP(s, t)) between two
points s and t in a polygon P is the path of smallest length
between s and t lying totally inside P .
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Let SP(s, t) = (s, u1, u2,..., uk , t). Then, (i) SP(s, t) is a simple
path, (ii) u1, u2,..., uk are vertices of P and (iii) for all i , ui and
ui+1 are mutually visible in P . SP(s, t) is outward convex at every
vertex on the path.



Computing SP(s, t) using visibility graph

The visibility graph of a polygon P with polygonal holes or
obstacles is a graph whose vertex set consists of the vertices of P
and whose edges are visible pairs of vertices.
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Assign the length of each visible pair as an weight on the
corresponding edge in the visibility graph and use the following
algorithm to compute SP(s, t).

1. M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their
uses in improved network optimization algorithms, Journal of
ACM, 34 (1987), 596-615. Running time:
O(n log n + E ), where E is the number of edges in the
visibility graph.



Algorithms for computing visibility graphs

1. T. Lozano-Perez and M. A. Wesley, An algorithm for planning
collision-free paths among polyhedral obstacles,
Communication of ACM, 22 (1979), 560-570. Running time:
O(n3).

2. D. T. Lee, Proximity and reachability in the plane, Ph.D.
Thesis, University of Illinois, 1978. Running time: O(n2 log n).

3. M. Sharir and A. Schorr, On shortest paths in polyhedral
spaces, SIAM Journal on Computing, 15 (1986), 193-215.
Running time: O(n2 log n).

4. E. Welzl, Constructing the visibility graph for n line segments
in O(n2) time, Information Processing Letters, 20 (1985),
167-171. Running time: O(n2).

5. T. Asano and T. Asano and L. J. Guibas and J. Hershberger
and H. Imai, Visibility of disjoint polygons, Algorithmica, 1
(1986), 49-63. Running time: O(n2).



6. M. Overmars and E. Welzl, New methods for constructing
visibility graphs, in Proc. 4th ACM Symposium on
Computational Geometry, 164-171, 1988. Running time:
O(E log n), where E is the number of edges in the
visibility graph.

7. S. K. Ghosh and D. M. Mount, An output sensitive algorithm
for computing visibility graphs, SIAM
Journal on Computing, 20 (1991), 888-910. Running time:
O(n log n + E ). Space: O(E ).

8. M. Pocchiola and G. Vegter, Topologically sweeping visibility
complexes via pseudo-triangulations, Discrete and
Computational Geometry, 16(1996), 419–453. Running time:
O(n log n + E ). Space: O(n).

9. S. Kapoor and S. N. Maheshwari, Efficiently Constructing the
Visibility Graph of a Simple Polygon with Obstacles, SIAM
Journal on Computing, 30(2000), 847-871. Running time:
O(h log n + T + E ), where T is the time for triangulation and
h is the number of holes.



Computing SP(s, t) using partial visibility graph
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Since SP(s, t) is outward convex at every vertex on the path, it is
enough to consider only those edges (u, v) of the visibility graph
that are tangential at u and v .



Algorithms for computing partial visibility graphs

1. S. Kapoor, S. N. Maheshwari and J. Mitchell, An
efficient algorithm for Euclidean shortest paths among
polygonal obstacles in the plane, Discrete and
Computational Geometry, 18(1997), 377-383. Running time:
O(n + h2 log n), where h is the number of holes. Space: O(n).

2. H. Rohnert, Shortest paths in the plane with convex polygonal
obstacles, Information Processing Letters, 23 (1986), 71-76.
Running time: O(n log n + h2).
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1. J. Mitchell, Geometric shortest path and network
optimization, Handbook in Computational Geometry
(edited by J.-R Sack and J. Urrutia), Elsevier Science
Publishers B.W., Chapter 15, pp. 633-702, 2000.

2. T. Asano, S. K. Ghosh and T. C. Shermer. Visibility in the
plane. Handbook in Computational Geometry (ed. J.-R. Sack
and J. Urruta), Elsevier Science Publishers B. W., Chapter 19,
pp. 829-876, 2000.



Computing SP(s, t) directly

SP(s, t) can be computed directly once the shortest path map is
constructed using continuous Dijkstra Method.
This method involves simulating the effect of a ‘wavefront’
propagating out of s. The wavefront at a distance d from s is the
set of all points u ∈ P such that |SP(s, u)| = d .
The propagation can be carried out on cell-by-cell basis after
decomposing the entire region of P into “conforming
subdivision”.

Open Problem

Can SP(s, t) be computed in O(n+ h log h) time and O(n) space?

1. J. Hershberger and S. Suri, An optimal-time algorithm for
Euclidean shortest paths in the plane, SIAM
Journal on Computing, 28(1999), 2215-2256. Running time:
O(n log n). Space: O(n log n).



Computing SP(s, t) in a simple polygon
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The dual graph of a triangulation of a simple polygon is a tree.
SP(s, t) passes only through the triangles in the path from Ts and
Tt in the dual tree.

1. B. Chazelle. Triangulating a simple polygon in
linear time, Discrete and Computational Geometry,
6(1991), 485-529. Running time: O(n).
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Let (u, v , z) be a triangle such that SP(s, u) and SP(s, v) have
already been computed. Then SP(s, z) can be computed by
drawing tangent from z to SP(s, u) or SP(s, v).

Open Problem

Can SP(s, t) be computed in a simple polygon in O(n) time
without triangulation?

1. D. Lee and F. Preparata, Euclidean shortest paths in the
presence of rectilinear boundaries, Networks, 14 (1984),
303-410. Running time: O(n).



Computing the Euclidean shortest path tree

The Euclidean shortest path tree from s is the union of SP(s, u) to
all vertices u of the polygon.

s

The figure shows the Euclidean shortest path tree from a given
point s to all vertices of a simple polygon.

1. L. Guibas, J. Hershberger, D. Leven, M. Sharir and R. Tarjan,
Linear time algorithms for visibility and shortest path problems
inside triangulated simple polygons, Algorithmica, 2(1987),
209-233. Running time: O(n).
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Tangent yz splits a funnel into two funnels and both funnels can
be propagated in O(n) time using Finger search tree.

Open Problems

1. Can the shortest path tree be computed from a point in a
triangulated simple polygon in O(n) time without using Finger
search trees?

2. Can the shortest path tree be computed from a point in a
simple polygon in O(n) time without triangulation?



Computing shortest path tree without triangulation
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A simple polygon P is said to be LR-visibility polygon if there
exists two points s and t on the boundary of P such that every
point of the clockwise boundary of P from s to t (denoted as L) is
visible from some point of the counterclockwise boundary of P
from s to t (denoted as R) and vice versa.



The shortest path tree from a point s inside a LR-visibility
polygon P can be computed in O(n) only by scanning the
boundary of P , which also gives a triangulation of P .

Open Problem

Can a simple polygon be decomposed into LR-visibility
polygons in O(n) time?

1. P. J. Heffernan, An optimal algorithm for the two-guard
problems, International Journal of Computational Geometry
and Applications, 6 (1996), 15-44. Running time: O(n).

2. G. Das, P. J. Heffernan and G. Narasimhan, LR-visibility in
polygons, Computational Geometry: Theory and Applications,
7 (1997), 37-57. Running time: O(n).

3. B. Bhattacharya and S. K. Ghosh, Characterizing LR-visibility
polygons and related problems, Computational Geometry:
Theory and Applications, 18 (2001), 19-36. Running time:
O(n).



Computing minimum link paths
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A minimum link path connecting two points s and t inside a
polygon P with or without holes (denoted by MLP(s, t)) is a
polygonal path with the smallest number of turns or links.

1. S. Suri, A linear time algorithm for minimum link paths inside
a simple polygon, Computer Graphics, Vision, and Image
Processing, 35 (1986), 99-110. Running time: O(n).

2. S. K. Ghosh, Computing the visibility polygon from a convex
set and related problems, Journal of Algorithms, 12 (1991),
75-95. Running time: O(n).



Suri’s algorithm
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V (1) is the visibility polygon of s. For i > 1, V (i) is the set of
points of P weakly visible from some window of V (i − 1). Number
of links (called link distance) required from s to any point of V (i)
is i . The turning points of a link path are on the windows.

1. J. Hershberger, An optimal visibility graph algorithm for
triangulated simple polygons, Algorithmica, 4 (1989), pp.
141-155. Running time: O(E ), where E is the number of
edges in the visibility graph.



Ghosh’s algorithm
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Ghosh’s algorithm transforms SP(s, t) into MLP(s, t):

◮ There exists a MLP(s, t) containing all eaves of SP(s, t).

◮ Compute MLP between the extensions of consecutive eaves
and connected them using the subsegment
containing eaves to construct MLP(s, t).



c d

MLP(s,t)

SP(a,c)

Greedy

Eave extensiona b
Eave Extension

Path

◮ MLP between the extensions of consecutive eaves ab and cd
is a convex greedy path inside the complete visibility polygon
of P from SP(a, c).

1. V. Chandru, S. K. Ghosh, A. Maheshwari, V. T. Rajan and S.
Saluja, NC-Algorithms for minimum link path and related
problems, Journal of Algorithms, 19 (1995), 173-203.
Running time: O(log n log log n) with O(n) processors in
CREW PRAM model of computing.



Computing MLP(s, t) in a polygon with holes

The algorithm of Mitchell et al. for computing MLP(s, t) in a
polygon with holes follows the same approach as that of Suri by
computing the regions V (1), V (2),...Since computing V (i)
explicitly, for all i , is very costly, algorithm computes only the
envelope of V (i) for all i which is enough to compute MLP(s, t).

Open Problem: Can MLP(s, t) be computed in a polygon with
holes in sub-quadratic time?

1. J. Mitchell and G. Rote and G. Woeginger, Minimum-link
paths among obstacles in the plane, Algorithmica, 8 (1992),
431-459. Running time: O(Ea(n) log2 n) where a(n) is the
inverse of the Ackermann function.

2. A. Maheshwari, J-R. Sack and H. Djidjev, Link distance
problems, Handbook in Computational Geometry (edited by
J.-R Sack and J. Urrutia), Elsevier Science Publishers B.W.,
Chapter 12, pp. 519-558, 2000.

3. S. K. Ghosh, Visibility Algorithms in the Plane, Cambridge
University Press, 2007.



Non-holonomic Robot Motion Planning

Path

The diection of

the steering

Robot

A robot is said to be non-holonomic if some kinematics constraints
(for example, velocity/acceleration bounds, curvature bounds)
locally restricts the authorized directions for its velocity.

A typical example of a non-holonomic robot is that of a car:
assuming no slipping of the wheels on the ground, the velocity of
the midpoint between the two rear wheels of the car is always
tangential to the path.



Bounded curvature path problem
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Compute a path of minimum length inside a polygon between two
given points s to t consisting of straight-line segments and circular
arcs such that
(i) the radius of each circular arc is at least 1,
(ii) each segment on the path is the tangent between the two
consecutive circular arcs on the path,
(iii) the given initial direction at s is tangent to the path at s,
(iv) the given final direction at t is tangent to the path at t.
Open Problem: The above problem is open except when the
given polygon is a convex polygon without holes.



Algorithms for bounded curvature paths

1. S. Fortune and G. Wilfong, Planning constrained motion,
Proceedings of the 20th Annual ACM Symposium on Theory
of Computing, pp. 445-459, 1988.

2. P. Jacobs and J. Canny, Planning smooth paths for mobile
robots, Proceedings of the IEEE Conference on Robotics and
Automation, pp. 2-7, 1989.

3. P.K. Agarwal, P. Raghavan, and H. Tamaki, Motion Planning
for a steering-constrained robot through moderate obstacles,
Proceedings of the 27th Annual ACM Symposium on Theory
of Computing, pp. 343-352, 1995.

4. J-D. Boissonnat and S. Lazard, A polynomial-time algorithm
for computing a shortest path of bounded curvature amidst
moderate obstacles, Proceedings of the Annual ACM
Symposium on Computational Geometry, pp. 242-251, 1996.



5. P.K. Agarwal, T. Biedl, S. Lazard, S. Robbins, S. Suri, and S.
Whitesides, Curvature-constrained shortest paths in a convex
polygon, Proceedings of the 14th Annual ACM Symposium on
Computational Geometry, pp. 392-401, 1998. Running time:
O(n2 log n).

6. J-D. Boissonnat, S. K. Ghosh, T. Kavitha and S. Lazard, An
algorithm for computing a convex and simple path of bounded
curvature in a simple polygon, Algorithmica 34 (2002),
109-156. Running time: O(n4).

7. J. Backer and D. Kirkpatrick, Curvature-bounded
traversals of narrow corridors, Proceedings of the 21st Annual
ACM Symposium on Computational Geometry, pp. 278-287,
2005.

8. J. Backer and D. Kirkpatrick, Finding curvature-
constrained paths that avoid polygonal obstacles,
Proceedings of the 21st Annual ACM Symposium on
Computational Geometry, pp. 66-73, 2007.



Computing a convex and simple path
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By constructing the locus of center of a circle of unit radius
translating along the boundary of complete visibility polygon of P ′,
the algorithm constructs a convex and simple path of bounded
curvature in O(n4) time.

This algorithm is based on the relationship between the Euclidean
shortest path, link paths and paths of bounded curvature.

Based on two new necessary conditions, a convex and simple path
of bounded curvature can be constructed in O(n4) time whose
length, except in special situations, is at most twice the optimal.



Exploring an unknown polygon: Continuous visibility
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Suppose the polygon P is not known apriori and the point robot
can compute the visibility polygon of P from its current position
using visual sensors.

The robot wants to see all points of P with minimum cost. Cost
can be the length or the number of links in the path that the robot
has traveled starting from its initial position.



Efficiency of the on-line algorithm

Competitive ratio =
cost of the on − line algorithm

cost of the off − line algorithm
.

1. A. Blum and P. Raghavan and B. Schieber, Navigating in
unfamiliar geometric terrain, SIAM Journal on Computing, 26
(1997), 110-137.

2. K. Chan and T. W. Lam, An on-line algorithm for navigating
in an unknown environment, International Journal of
Computational Geometry and Applications, 3 (1993), 227-244.

3. X. Deng and T. Kameda and C. Papadimitriou, How to learn
an unknown environment I: The rectilinear case, Journal of
ACM, 45 (1998), 215-245.



4. F. Hoffmann, C. Icking, R. Klein, K. Kriegel, A competitive
strategy for learning a polygon, In Proceedings of the eighth
ACM-SIAM Symposium on Discrete Algorithms, Pages
166-174, 1997.

5. F. Hoffmann, C. Icking, R. Klein and Klaus Kriegel, The
polygon exploration problem, SIAM Journal on Computing, 31
(2001), 577-600.

6. A. Lopez-Ortiz and S. Schuierer, Searching and on-line
recognition of star-shaped polygons, Information and
Computations, 185(2003), 66-88.



Searching for the kernel

p

Kernel

Starting from the intial position p, the problem is to design a
competitive strategy to walk into the kernel of P .

Open Problem: The problem is open in link metric.



Kernel Searching Algorithms

1. C. Icking and R. Klein, Searching for the Kernel of a
Polygon—A Competitive Strategy, SOCG, pages 258-266,
1995. Competitive ratio:5.331.

2. J.-H. Lee, C.-S. Shin, J.-H. Kim, S. Y. Shin and K.-Y. Chwa,
New competitive strategies for searching in unknown
star-shaped polygons, SOCG, pages 427-432, 1997.
Competitive ratio: 3.828.

3. P. Anderson and A. Lopez-Ortiz, A new lower bound for
kernel searching, CCCG, 2000. Competitive ratio: 1.515.



Searching for a target in a street

s

t

A street (also called LR-polygon) is a polygon for which two
boundary chains from start to target are mutually weakly visible.
So, the entire street is visible from any path from s to t.

The problem is to find a path from s to t such that the
competitive ratio is the minimum.

1. S. K. Ghosh, Visibility Algorithms in the Plane,
Cambridge University Press, 2007.



Algorithms for searching a street

1. R. Klein, Walking an unknown street with bounded detour,
Computational Geometry: Theory and Applications, 1 (1992),
325-351. Competitive ratio: 5.72.

2. J. Kleinberg, On line search in a simple polygon, In
Proceedings of the fifth ACM-SIAM Symposium on Discrete
Algorithms, Pages 8-15, 1994. Competitive ratio: 2.83.

3. C. Icking, R. Klein, E. Langetepe and S. Schuierer, An optimal
competitive strategy for walking in streets, SIAM Journal on
Computing, 33(2004), 462-486. Competitive ratio: 1.41.

4. A. Lopez-Ortiz and S. Schuierer, Lower bounds for streets and
generalized streets, International Journal of Computational
Geometry and Applications, 11(2001), 401-421. Lower
bounds: 1.41 and 9.06.

5. A. Datta and C. Icking, Competitive searching in a generalized
street, CGTA, 13 (1999), 109-120. Competitive ratio: 9.06.

6. S. K. Ghosh and S. Saluja, Optimal on-line algorithms for
walking with minimum number of turns in unknown streets,
CGTA, 8 (1997), 241-266. Competitive ratio: 2.



Exploring an unknown polygon: Discrete visibility

Many on-line computational geometry algorithms for exploring
unknown polygons assume that the visibility region can be
determined in a continuous fashion from each point on a path of a
robot. Is this assumption reasonable?

1. Autonomous robots can only carry a limited amount of
on-board computing capability. At the current state of the
art, computer vision algorithms that could compute visibility
polygons are time consuming. The computing limitations
suggest that it may not be practically feasible to continuously
compute the visibility polygon along the robot’s trajectory.

2. For good visibility, the robot’s camera will typically be
mounted on a mast. Such devices vibrate during the robot’s
movement, and hence for good precision the camera must be
stationary while computing visibility polygon.



It seems feasible to compute visibility polygons only at a discrete
number of points. Is the cost associated with a robot’s physical
movement dominate all other associated costs?

The criteria for minimizing the cost for robotic exploration is to
reduce the number of visibility polygons.



Exploration under discrete visibility

We wish to design an algorithm that a point robot can use to
explore an unknown polygonal environment P under discrete
visibility.
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Three views are enough to see all vertices and edges of the polygon
but not the entire free-space.

1. S. K. Ghosh and J. W. Burdick, An on-line algorithm for
exploring an unknown polygonal environment by a point
robot, Proceedings of the 9th Canadian Conference on
Computational Geometry, pp. 100-105, 1997.



Exploration algorithm of Ghosh and Burdick

p2p1

(i) Let S denote the set of viewing points that the algorithm has
computed so far. (ii) The triangulation of P is denoted as T (P).
(iii) The visibility polygon of P from a point pi is denoted as
VP(P , pi).

Step 1: i := 1; T (P) := ∅; S := ∅; Let p1 denote the starting
position of the robot.
Step 2: Compute VP(P , pi); Construct the triangulation T ′(P) of
VP(P , pi); T (P) := T (P) ∪ T ′(P); S = S ∪ pi ;



Step 3: While VP(P , pi ) − T (P) = ∅ and i 6= 0 then i := i − 1;
Step 4: If i = 0 then goto Step 7;
Step 5: If VP(P , pi) − T (P) 6= ∅ then choose a point z on any
constructed of VP(P , pi) lying outside T (P);
Step 6: i := i + 1; pi := z ; goto Step 2;
Step 7: Output S and T (P);
Step 8: Stop.

p2

3

p1

p



Competitive ratio
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The algorithm needs r + 1 views. Competitive ratio is (r + 1)/2,
where r denotes the number of reflex vertices of the polygon.
Open Problem: Can the bound be improved?



The art gallery problem

An art gallery can be viewed as a polygon P with or without holes
with a total of n vertices and guards as points in P .

Victor Klee asked in 1976: How many guards are always
sufficient to guard any polygon with n vertices?

P

Guard 2

 Guard 1

The minimum vertex, point and edge guard problems for polygons
with or without holes (including orthogonal polygons) are NP-hard.

1. J. O’Rourke, Art gallery theorems and algorithms, Oxford
University Press, 1987.

2. J. Urrutia, Art Gallery and illumination problems, Handbook
of Computational Geometry (Ed. J.-R. Sack and J. Urrutia),
Elsevier Science, pp. 973-1027, 2000.



Approximation algorithms
1. S. K. Ghosh, Approximation algorithm for art gallery

problems, Proceedings of the Canadian Information
Processing Society Congress, pp. 429-434, 1987. Running
time: O(n5 log n) time. Approximation ratio: O(log n).
Recently, the running time has been improved to O(n4) for
simple polygons and O(n5) for polygons with holes.

2. A. Efrat and S. Har-Peled, Guarding galleries and terrains,
IPL, 100 (2006), 238-245. Running time and the approx.
ratio: (i) For simple polygons, O(nc2

opt log4 n) expected time
and O(log copt), where copt is the size of the optimal solution.
(ii) For polygons with h holes, O(nhc3

optpolylog n) expected
time and O(log n log(copt log n)).

3. A. Deshpande, T. Kim, E. D. Demaine1 and S. E. Sarma, A
pseudopolynomial time O(logn)-approximation algorithm for
art gallery problems, Proceedings of the 10th WADS LNCS,
Springer, no. 4619, pp. 163-174, 2007. Running time:
Polynomial in n, the number of walls and the spread, where
the spread can be exponential. Approx. ratio: O(log copt).



Optimal exploration and the Art Gallery Problem

◮ Suppose an optimal exploration algorithm for a point robot
has computed visibility polygons from points p1, p2,...., pk .

◮ We know that (i)
⋃k

i=1 V (P , pi) = P , (ii) pi ∈ V (P , pj) for
some j < i and (iii) k is minimum. So, P can be guarded by
placing stationary guards at p1, p2,...., pk .

◮ The exploration problem for a point robot is the Art Gallery
problem for stationary guards with additional constraint (ii).

◮ Our exploration algorithm for a point robot is an
approximation algorithm for this variation of the Art Gallery
problem.

◮ The exploration path of the robot in P is a watchman route or
an autonomous inspection path.

Open Problem

Can one prove that the exploration problem, like the Art Gallery
problem, is NP-hard?



Convex robot exploration
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We wish to design an algorithm that a convex robot C can use to
explore an unknown polygonal environment P (under translation)
following the similar strategy of a point robot.

C needs more than r + 1 views for exploration.

Open problem

Can one derive an upper bound on the number of views for a
convex robot exploration?



Exploring an unknown polygon: Bounded visibility

Computer vision range sensors or algorithms, such as stereo or
structured light range finder, can reliably compute the 3D scene
locations only up to a depth R . The reliability of depth estimates
is inversely related to the distance from the camera. Thus, the
range measurements from a vision sensor for objects that are far
away are not at all reliable.

Therefore, the portion of the boundary of a polygonal environment
within the range distance R is only considered to be visible from
the camera of the robot.

u1 u2

u11

u6

u9

u3

u4

u5
u7

u8

u10

u12

R

pi

P

Vertices of restricted visibility polygon from pi with range R are
u1, u2, . . . , u12.



Competitive ratio

p1

p2

p3

P z

The maximum number of views needed to explore the unknown
polygon P with h obstacles of size n is bounded by
⌊

8×Area(P)
3×R2

⌋

+
⌊

Perimeter(P)
R

⌋

+ r + h + 1.

The competitive ratio of the algorithm is
⌊

8π

3 + πR×Perimeter(P)
Area(P) + (r+h+1)×πR2

Area(P)

⌋

.

Open problem

Can one improve the competitive ratio of the algorithm?



Exploration and Coverage Algorithms

1. A. Bhattacharya, S. K. Ghosh and S. Sarkar, Exploring an
Unknown Polygonal Environment with Bounded Visibility,
Lecture Notes in Computer Science, No. 2073, pp. 640-648,
Springer Verlag, 2001.

2. S. K. Ghosh, J. W. Burdick, A. Bhattacharya and S. Sarkar,
On-line algorithms for exploring unknown polygonal
environments with discrete visibility, Special issue on
Computational Geometry approaches in Path Planning, IEEE
Robotics and Automation Magazine, vol.15, no. 2, pp. 67-76,
2008.

3. E. U. Acar and H. Choset, Sensor-based coverage of unknown
environments: Incremental construction of morse
decompositions, The International Journal of Robotics
Research, 21 (2002), 345-366.

4. K. Chan and T. W. Lam, An on-line algorithm for navigating
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Concluding remarks

In this talk, we have reviewed a few algorithms for robot path
planning in the plane which are based on visibility
computations and have suggested a few open problems.
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