
Introduction to Approximation Algorithms

Subir Kumar Ghosh
School of Technology & Computer Science
Tata Institute of Fundamental Research

Mumbai 400005, India
ghosh@tifr.res.in

Overview

1. Background

2. Vertex Cover Problem

3. Planar Graph Coloring Problem

4. Traveling-salesman Problem

5. Set Covering Problem

6. Application of Set Cover to Art Gallery problems

NP1.gif (GIF Image, 349x161 pixels) http://max.cs.kzoo.edu/~kschultz/CS51

“I can’t find an efficient algorithm to the problem you have assigned to
me. I guess I’m just too dumb. ”.

To avoid serious damage to your position within the company, it would

be much better if you could prove that the assigned problem is inherently

intractable, that no algorithm could possibly solve it quickly. Then you

could stride confidently into the boss’s office and proclaim:

NP3.gif (GIF Image, 352x224 pixels) http://max.cs.kzoo.edu/~kschultz/CS51

“I can’t find an efficient algorithm, but neither can all these famous
people”.

At the very least, this would inform your boss that it would do no good

to fire you and hire another expert on algorithms.

Background

◮ A large number of optimization problems which are required
to be solved in practice are NP-hard.

◮ For such problems, it is not possible to design algorithms that
can find exactly optimal solution to all instances of the
problem in time which is polynomial in the size of the input.

◮ Of course, we assume that P 6= NP .

◮ If this stringent requirement is relaxed, the problems may be
solved reasonably well.

1. M. R. Garey and D. S. Johnson, Computers and Intractibility:
A guide to the theory of NP-completeness, W. H. Freeman,
1979.

2. R. Motwani, Lecture Notes on Approximation Algorithms,
Volume 1, No. STAN-CS-92-1435, Stanford University, 1992.

◮ One possible approach of relaxation is to provide near-optimal
solution rather than an optimal solution keeping the running
time of the algorithm in polynomial.

◮ This gives the notion of the “approximate” solution of an
optimization problem.

◮ Some problems (e.g. Knapsack, Scheduling, Bin Packing,
etc.) seem to be easy to approximate.

◮ On the other hand, there are problems (e.g. Graph Coloring,
Travelling Salesman, Clique, etc.) are so hard that even
finding very poor approximation can be shown to be NP-hard.

◮ Of course, there is a class of problems (e.g., Vertex Cover,
Euclidean Travelling Salesman, Steiner Trees) which seem to
be of intermediate complexity.

Vertex Cover

◮ [Instance] Graph G = (V ,E).

◮ [Feasible Solution] A subset C ⊆ V such that at least one
vertex of every edge of G belongs C .

◮ [Value] The value of the solution is the size of the cover |C |,
and the goal is to minimize it.

Greedy Algorithm I

1. Take any edge of e ∈ E and choose one of its vertex (say, v)

2. Add v to C .

3. Remove all edges incident on v from E .

4. Repeat the process till all edges are removed from E .

The above algorithm correctly computes a vertex cover. How good
is the solution?

Performance Measure

◮ The “measure of goodness” of an approximation algorithm
must relate the solution produced by the algorithm to the
optimal solution of the optimization problem.

◮ In absolute performance measure, some constant k for k > 0
is obtained such that the difference between optimal and
approximate solutions is bounded by k for all instances of the
optimization problem.

◮ In relative performance measure, a function R is obtained
such that the ratio (called approximation ratio) between
optimal and approximate solutions is bounded by R for all
instances of the optimization problem.

◮ In the case of a minimization problem, R is the ratio of the
approximation solution by the optimal solution (i.e., R ≥ 1).

◮ In the case of a maximization problem, R is the ratio of the
optimal solution by the approximation solution (i.e., R ≤ 1).

Greedy Algorithm II

1. Take a vertex v ∈ V of maximum degree in the current graph.

2. Add v to C .

3. Remove all edges of E incident on v from E .

4. Repeat the process till all edges are removed from E .

The above algorithm correctly computes a vertex cover. How good
is the solution?

Optimal solution consists of green vertices.

Let m! be the number of green vertices of degree m. So, there are
m!/m red vertices of degree m, m!/(m − 1) blue vertices of degree
(m − 1), . . ., m! yellow vertices of degree 1.

Greedy algorithm may choose all non-green vertices. So, the total
number of vertices chosen by the approximation algorithm is
m![1/m + 1/(m − 1) + 1/(m − 2) + . . . + 1] ≃ m! log(m)

So, the approximation ratio of the greedy algorithm is log(m).

Can we design an approximation algorithm giving a constant
approximation ratio?

Greedy Algorithm III

1. Take any edge (u, v) ∈ E .

2. Add both vertices u and v to C .

3. Remove all edges of E incident on u or v from E .

4. Repeat the process till all edges are removed from E .

The above algorithm correctly computes a vertex cover. How good
is the solution?

Observe that the set of edges chosen by the algorithm forms a
maximal matching.

1. V. Vazirani, Approximation Algorithms, Springer, 2003.

Theorem: The approximation ratio of the Greedy Algorithm III is 2.

Tight Bound

Open Problem: Design an approximation algorithm which gives a
better approximation ratio.

1. G. Karakostas, A better approximation ratio for the vertex
cover problem, ACM Transactions on Algorithms 5(4), 8
pages, 2009. (Ratio: 2 − 1/

√

(log n)).

Planar Graph Coloring

◮ The problem of coloring the vertices of a graph is to assign
color to vertices such that no two adjacent vertices have the
same color.

◮ The goal is to minimize the number of colors.

◮ The problem of deciding whether a planar graph is 3-colorable
is NP-complete.

◮ The problem is to design an absolute approximation algorithm
for coloring planar graphs such that the difference between an
optimal solution and the solution obtained by the algorithm is
at most 2.

Traveling-salesman Problem

◮ Given a complete graph G = (V ,E) having a non-negative
integer cost c(u, v) associated with each edge of E , the
problem is to find a minimum cost tour in G visiting every
vertex of G exactly once.

◮ In other words, the problem is to find a Hamiltonian cycle in
G with minimum cost.

Theorem: For an polynomial time computable function α(n),
Traveling-salesman problem cannot be approximated within a
factor of α(n), unless P = NP .

Euclidean Traveling-salesman Problem

◮ In Euclidean traveling-salesman problem, the cost function
satisfies triangle inequality i.e. c(u, v) + c(v ,w) ≤ c(u,w).

◮ This restriction allows us to design approximation algorithms
for Euclidean traveling-salesman problem.

◮ Approximation algorithm:

a
b

c
d

e

f

i

h

g

j

Step 1: Take a vertex a of G and compute a minimum cost
spanning tree T for G with a as the root.

i

hd

e

g

j
f

a

c

b

Step 2: Double every edge of T to obtain Eulerian graph.
Step 3: Find a Eulerian tour T ′ of T . Let S be the sequence of
vertices in the Eulerian tour T ′.

So, S = [a, b, c , d , c , e, c , b, f , g , h, g , i , g , f , j , f , b, a]

Step 4: Scan S from left to right and remove a vertex v from S if
it has already occurred earlier in S .

So, the modified sequence of S is [a, b, c , d , e, f , g , h, i , j , a].

i

hd

g

f
a

c

b

e

j

Step 5: Construct a Hamiltonian cycle from a to a by connecting
consecutive vertices in the modified S by edges to form Euclidean
traveling-salesman tour.

The above algorithm correctly computes a Euclidean
traveling-salesman tour. How good is the solution?

Theorem: The approximation ratio of the Greedy Algorithm is 2.

Set-covering Problem

S3 S5

S6

S1

S2

S4

Set-covering problem: Given a finite family C of sets S1, . . . ,Sn,
the problem is to determine the minimum cardinality A ⊆ C such
that

⋃

i∈A Si =
⋃n

j=1 Sj .

1. D. S. Johnson, Approximation algorithms for combinatorial
problems, Journal of Computer and System Sciences, 9
(1974), 256-278.

Greedy Algorithm

1. Initialize the current family of sets by S1, . . . ,Sn.

2. Find a set Si in the current family of sets which has the
maximum number of elements.

3. Remove the elements of Si from the existing sets in the family.

4. Remove Si and all empty sets from the current family of sets.

5. Repeat this process till the current family of sets is empty.

The above algorithm correctly computes a set cover. How good is
the solution?

Upper bound on approximation ratio
a2 a3 a4 a5a1 a6

b1 b3b2

c4 c5 c6

d1 d2

e3 e4

f5 f6

g1

h2

i3
j4

k5

l6

Sets corresponding to rows are {a1, a2, a3, a4, a5, a6}, {b1, b2,
b3}, {c4, c5, c6}, {d1, d2}, {e3, e4}, {f5, f6}, {g1}, {h2}, {i3},
{j4}, {k5}, {l6}. Sets corresponding to columns are {a1, b1, d1,
g1}, {a2, b2, d2, h2}, {a3, b3, e3, i3}, {a4, c4, e4, j4}, {a5, c5, f5,
k5}, {a6, c6, f6, l6}.

Optimal cover chooses 6 sets corresponding to 6 columns (say,
k = 6) but the greedy algorithm chooses sets corresponding to
rows (i.e., k

6 + k
3 + k

2 + k
1 ≃ k log k).

Theorem: Approximation ratio of the Greedy Algorithm is
O(log(n)).

Minimum number of guards

Let P be a polygon with or without holes. What is the minimum
number of guards required for guarding a polygon P with or
without holes?

Suppose, a positive integer k is given. Can it be decided in
polynomial time whether k guards are sufficient to guard P?

The problem is NP-complete.

Theorem: The minimum vertex, point and edge guard problems
for polygons with or without holes (including orthogonal polygons)
are NP-hard.

Theorem: The minimum vertex and point guard problems for
orthogonal polygons with or without holes are NP-hard.

1. D. T. Lee and A. K. Lin, Computational Complexity of Art
Gallery Problems, IEEE Transactions on Information Theory,
IT–32 (1986), 276–282.

2. J. O’Rourke and K. Supowit, Some NP-hard polygon
decomposition problems, IEEE Transactions on Information
Theory, IT-29 (1983), 181-190.

3. D. Schuchardt and H. Hecker, Two NP-hard art-gallery
problems for ortho-polygons, Mathematical Logic Quarterly,
41 (1995), 261-267.

4. B.C. Liaw, N.F. Huang, R.C.T. Lee, The minimum
cooperative guards problem on k-spiral polygons, Proceedings
of the Canadian Conference on Computational Geometry, pp.
97–101, 1993.

5. M. Katz and G. Roisman, On guarding the vertices of
rectilinear domains, Computational Geometry: Theory and
Applications, 39 (2008), 219-228.

Approximation algorithms for minimum guard problems

1. S. K. Ghosh, Approximation algorithms for art gallery
problems, Technical report no. JHU/EECS-86/15,
Department of Electrical Engineering and Computer Science,
The Johns Hopkins University, August 1986. Also in
Proceedings of the Canadian Information Processing Society
Congress, pp. 429-434, 1987. Running time: O(n5 log n)
time. Approximation ratio: O(log n).

2. S. K. Ghosh, Approximation algorithms for art gallery
problems in polygons, Discrete Applied Mathematics, 158
(2010), 718-722. Recently, the running time has been
improved to O(n4) for simple polygons and O(n5) for
polygons with holes, keeping the approximation ratio same.

3. A. Efrat and S. Har-Peled, Guarding galleries and terrains,
Information Processing Letters, 100 (2006), 238-245. Running
time and the approximation ratio: (i) For simple polygons,
O(nc2

opt log4 n) expected time, and O(log copt) approximation
ratio, where copt is the number of vertices in the optimal
solution. (ii) For polygons with h holes, O(nhc3

optpolylog n)

4. B. J. Nilsson, Approximate Guarding of Monotone and
Rectilinear Polygons, Proceedings of the 32nd International
Colloquium on Automata, Languages and Programming,
Lecture Notes in Computer Science, Springer-Verlag, no.
3580, pp. 1362-1373, 2005. The paper gives polynomial time
approximation algorithms (i) for monotone polygons and (ii)
for simple orthogonal polygons. Approximation ratios are 12
and 96 respectively.

5. A. Deshpande, T. Kim, E. D. Demaine1 and S. E. Sarma, A
pseudopolynomial time O(log n)-approximation algorithm for
art gallery problems , Proceedings of the 10th International
Workshop on Algorithms and Data Structures, LNCS,
Springer-Verlag, no. 4619, pp. 163-174, 2007. Running time:
Polynomial in n, the number of walls and the spread, where
the spread can be exponential. Approximation ratio:
O(log copt).

Heuristics for Stationary Guard Problems

◮ Recently, efforts are being made to design heuristics to solve
stationary guard problems where the efficiency of these
heuristics are evaluated by experimentation.

◮ These heuristics essentially follow Ghosh’s method of first
discretizing the entire region of a polygon and then using the
minimum set-cover solution.

◮ However, these heuristics use different criteria for
discretization or in choosing candidate sets.

1. Y. Amit and J. S. B. Mitchell and E. Packer, Locating Guards
for Visibility Coverage of Polygons, Proceedings of the 9th
Workshop on Algorithm Engineering and Experiments
(ALENEX’07), SIAM, pp. 120-134, 2007.

2. M. C. Couto and P. J. de Rezende and C. C. de Souza, An
exact and efficient algorithm for the orthogonal art gallery
problem, Proceedings of the 20th Brazilian Symposium on
Computer Graphics and Image Processing, pp. 87-94, 2007.

3. M. C. Couto and P. J. de Rezende and C. C. de Souza,
Experimental evaluation of an exact algorithm for the
orthogonal art gallery problem, Proceedings of the 7th
International Workshop on Experimental Algorithms, LNCS,
vol. 5038, pp. 101-113, Springer, Heidelberg, 2008.

4. M. C. Couto and P. J. de Rezende and C. C. de Souza, An IP
solution to the art gallery problem, Proceedings of the 25th
Annual ACM Symposium on Computational Geometry, pp.
88-89, 2009.

Vertex-guard problem

2

1

5
16

3 4

6

9

14

13

7

8

10

11

12

15

2

10

1

5

6

12

3

11

8 7

9

P P

4

A simple polygon is called a fan if there exists a vertex that is
visible from all points in the interior of the polygon.

The vertex guard problem can be treated as a polygon
decomposition problem in which the decomposition pieces are fans.

1

3

4

7
10

12

15
16

2

9

8
14

6

13

17

11

5

4

78

10

16

1

2

3

5
6

9

11
12

13
14

15
P P

Vertices 7, 12 and 17 together can see the entire boundary of the
polygon but the shaded region is not visible from any of these
vertices.

Three fans (vertices 1, 4 and 7) are necessary to cover the polygon
if only edge extensions are allowed, whereas two fans (vertices 1
and 7) suffice if we allow the boundary of convex components to
be bounded by segments that contains any two vertices of the
polygon.

u

v

P

P

The polygonal region of P is decomposed into convex components
where every component is bounded by segments that contains any
two vertices of the polygon.

Every convex component must lie in at least one of the fans
chosen by the approximation algorithm.

Lemma: Every convex component is either totally visible or totally
invisible from a vertex of P .

The problem of finding the minimum number of fans to cover P is
same as the set-covering problem, where every fan is a set and
convex components are elements of the set.

Vertex-guard algorithm

Step 1: Draw lines through every pair of vertices of P and
compute all convex components c1, c2, . . . , cm of P . Let
C = (c1, c2, . . . , cm), N = (1, 2, . . . , n) and Q = ∅.
Step 2: For 1 ≤ j ≤ n, construct the set Fj by adding those
convex components of P that are totally visible from the vertex vj .
Step 3: Find i ∈ N such that |Fi | ≥ |Fj | for all j ∈ N and i 6= j .
Step 4: Add i to Q and delete i from N.
Step 5: For all j ∈ N, Fj := Fj − Fi , and C := C − Fi .
Step 6: If |C | 6= ∅ then goto Step 3.
Step 7: Output the set Q and Stop.

Theorem: The approximation algorithm for the minimum vertex
guard problem in a polygon P of n vertices computes solutions that
are at most O(log n) times the optimal. If P is a simple polygon,
the approximation algorithm runs in O(n4) time. If P is a polygon
with holes, the approximation algorithm runs in O(n5) time.

Edge-guard algorithm

Step 1: Draw lines through every pair of vertices of P and
compute all convex components c1, c2, . . . , cm of P . Let
C = (c1, c2, . . . , cm), N = (1, 2, . . . , n) and Q = ∅.
Step 2: For 1 ≤ j ≤ n, construct the set Ej by adding those
convex components of P that are totally visible from the edge ej of
P .
Step 3: Find i ∈ N such that |Ei | ≥ |Ej | for all j ∈ N and i 6= j .
Step 4: Add i to Q and delete i from N.
Step 5: For all j ∈ N, Ej := Ej − Ei , and C := C − Ei .
Step 6: If |C | 6= ∅ then goto Step 3.
Step 7: Output the set Q and Stop.
Theorem: For the minimum edge guard problem in an n-sided
polygon P , an approximate solution can be computed which is at
most O(log n) times the optimal. If P is a simple polygon, the
approximation algorithm runs in O(n4) time. If P is a polygon
with holes, the approximation algorithm runs in O(n5) time.

Any set consisting of arbitrary chosen convex components may not
form a fan as every fan consists of contiguous convex components.
Therefore, constructing any example where the greedy algorithm
takes O(log n) times optimal does not seem to be possible.

F1

F3

F2

F4

F6F5

Conjecture: (Ghosh 1986) Approximation algorithms are expected
to yield solutions within a constant factor of the optimal.

Lower bound on approximation ratio

Regarding the lower bound on the approximation ratio for the
problems of minimum vertex, point and edge guards in simple
polygons, it has been shown that these problems are APX-hard
using gap-preserving reductions from
5-OCCURRENCE-MAX-3-SAT.

This means that for each of these problems, there exists a constant
ǫ > 0 such that an approximation ratio of 1 + ǫ cannot be
guaranteed by any polynomial time approximation algorithm unless
P = NP .

The above statement implies that there may be approximation
algorithms for these problems whose approximation ratios are not
small constants.

1. S. Eidenbenz C. Stamm and P. Widmayer, Inapproximability
Results for Guarding Polygons and Terrains, Algorithmica, 31
(2000), 79-113.

On the other hand, for polygons with holes, these problems cannot
be approximated by a polynomial time algorithm with ratio
((1 − ǫ)/12)(ln n) for any (ǫ > 0), unless NP ⊆ TIME (nO(loglogn)).
The results are obtained by using gap-preserving reductions from
the SET COVER problem.

Open problems

Design approximation algorithms for vertex, edge and point guards
problems in simple polygons which yield solutions within a
constant factor of the optimal.

