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Abū Jafar Muhammad al-Khwārizm̄i, a Persian astronomer and mathematician,
wrote a treatise in 825 AD, Kitāb hisāb al-adad al-hind̄i (Book on Calculation
with Hindu Numerals), which was translated into Latin in the early 12th
century as Liber Algorismi de numero Indorum (The Book of al-Khwārizm̄i on
Indian Numerals). The word ”Algorism”- the Latin form of al-Khwārizm̄i’s
name - came to be applied to any systematic work on ancient Indian-style
computational mathematics. The present term ”algorithm” is a distorted form
of ”algorism”.



Overview
We present three algorithms from the following papers.

1. S. K. Ghosh, Approximation algorithms for art gallery problems, Technical
report no. JHU/EECS-86/15, Department of Electrical Engineering and
Computer Science, The Johns Hopkins University, August 1986. Also in
Proceedings of the Canadian Information Processing Society Congress, pp.
429-434, 1987. Running time: O(n5 log n). Approximation ratio: O(log n).

2. S. K. Ghosh, Approximation algorithms for art gallery problems in
polygons, Discrete Applied Mathematics, vol. 158, pp. 718-722, 2010 .
The running time has been improved to O(n4) for simple polygons and
O(n5) for polygons with holes, keeping the approximation ratio same.

3. P. Bhattachary, S. K. Ghosh and B. Roy, Vertex Guarding in Weak
Visibility Polygons, Proceedings of the 1st International Conference on
Algorithms and Discrete Applied Mathematics, Kanpur, Lecture Notes in
Computer Science, vol. 8959, pp. 45-57, Springer, 2015. Running time:
O(n2). Approximation ratio:6.

4. A. Baertschi, S. K. Ghosh, M. Mihalak, T. Tschager and P. Widmayer,
Improved bounds for the conflict-free chromatic art gallery problem,
Proceedings of the 30th ACM Annual Symposium on Computational
Geometry, pp. 144-153, 2014. Running time: O(n2). Chromatic guard
number: O(log n).
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Visibility in Polygons
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A polygon P is defined as a closed region in the plane bounded by a finite set
of line segments (called edges of P) such that there exists a path between any
two points of P which does not intersect any edge of P.

If the boundary of P consists of two or more cycles, then P is called a polygon
with holes. Otherwise, P is called a simple polygon or a polygon without holes.

Two points u and v in a polygon P are said to be visible if the line segment
joining u and v lies entirely inside P.

A polygon P is said to be a weak visibility polygon if every point in P is visible
from some point of an edge uv .

1. S. K. Ghosh, Visibility Algorithms in the Plane, Cambridge University
Press, Cambridge, UK, 2007.
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Art gallery problem

P

Guard 2

Guard 1

An art gallery can be viewed as a polygon P with or without holes with a total
of n vertices and guards (or cameras) as points in P.

During a conference at Stanford in 1976, Victor Klee asked the following
question:

How many guards are always sufficient to guard any polygon with n vertices?

1. R. Honsberger, Mathematical games II, Mathematical Associations for
America, 1979.



Chvatal’s art gallery theorem
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Theorem: A simple polygon P of n vertices needs at most b n
3
c guards.

Lemma: All vertices of P can be colored using three colors (say, {1, 2, 3})
such that two vertices joined by an edge of P or by a diagonal in the
triangulation of P receive different colors.

1. V. Chvatal, A combinatorial theorem in plane geometry, Journal of
Combinatorial Theory, Series B, 18 (1975), 39-41.

2. S. Fisk, A short proof of Chvatal’s watchman theorem, Journal of
Combinatorial Theory, Series B, 24 (1978), 374.



KKK’s art gallery theorem

Theorem: An orthogonal polygon P of n vertices needs at most b n
4
c guards.
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1. J. Kahn, M. Klawe and D. Kleitman, Traditional galleries
require fewer watchmen, SIAM Journal of Algebraic and Discrete
Methods, 4 (1983), 194-206.

2. J. O’Rourke, An alternative proof of the rectilinear art gallery theorem,
Journal of Geometry, 211 (1983), 118-130.



Different types of guards

mobile guard

edge guard

P

I Point guards: These are guards that are placed anywhere in the polygon.

I Vertex guards: These are guards that are placed on vertices of the polygon.

I Edge guards: These are guards that are allowed to patrol along an edge of
the polygon.

I Mobile guards: These are guards that are allowed to patrol along a
segment lying inside a polygon.



Art Gallery theorems in polygons with holes

PP

Theorem: Any polygon P with n vertices and h holes can always be guarded
with b n+2h

3
c vertex guards.

Conjecture: (Shermer) Any polygon P with n vertices and h holes can always
be guarded with b n+h

3
c vertex guards.

The conjecture has been proved by Shermer for h = 1. For h > 1, the
conjecture is still open.

1. J. O’Rourke, Art gallery theorems and algorithms, Oxford University Press,
1987.



Minimum number of guards

Let P be a polygon with or without holes. What is the minimum number of
guards required for guarding a polygon P with or without holes?

Suppose, a positive integer k is given. Can it be decided in polynomial time
whether k guards are sufficient to guard P?

The problem is NP-complete.

Theorem: The minimum vertex, point and edge guard problems for polygons
with or without holes (including orthogonal polygons) are NP-hard.

Theorem: The minimum vertex and point guard problems for orthogonal
polygons with or without holes are NP-hard.



1. D. T. Lee and A. K. Lin, Computational Complexity of Art Gallery
Problems, IEEE Transactions on Information Theory, IT–32 (1986),
276–282.

2. A. Aggarwal, The art gallery theorems: Its variations,applications and
algorithmic aspects, Ph. D. thesis, John Hopkins University, 1984.

3. J. O’Rourke and K. Supowit, Some NP-hard polygon decomposition
problems, IEEE Transactions on Information Theory, IT-29 (1983),
181-190.

4. D. Schuchardt and H. Hecker, Two NP-hard art-gallery problems for
ortho-polygons, Mathematical Logic Quarterly, 41 (1995), 261-267.

5. B.C. Liaw, N.F. Huang, R.C.T. Lee, The minimum cooperative guards
problem on k-spiral polygons, Proceedings of the Canadian Conference on
Computational Geometry, pp. 97–101, 1993.

6. M. Katz and G. Roisman, On guarding the vertices of rectilinear domains,
Computational Geometry: Theory and Applications, 39 (2008), 219-228.



Approximation algorithms for minimum guard problems

An algorithm that returns sub-optimal solutions for an optimization problem is
called an approximation algorithm.

Approximation algorithms are often associated with NP-hard problems; since it
is unlikely that there can ever be efficient polynomial time exact algorithms
solving NP-hard problems, one settles for polynomial time sub-optimal
solutions.

We present polynomial time approximation algorithms for the minimum vertex
and edge guard problems in a polygon P with or without holes.



1. S. K. Ghosh, Approximation algorithms for art gallery problems, Technical
report no. JHU/EECS-86/15, Department of Electrical Engineering and
Computer Science, The Johns Hopkins University, August 1986. Also in
Proceedings of the Canadian Information Processing Society Congress, pp.
429-434, 1987. Running time: O(n5 log n) time. Approximation ratio:
O(log n).

2. S. K. Ghosh, Approximation algorithms for art gallery problems in
polygons, Discrete Applied Mathematics, vol. 158, pp. 718-722, 2010 .
The running time has been improved to O(n4) for simple polygons and
O(n5) for polygons with holes, keeping the approximation ratio same.

3. A. Efrat and S. Har-Peled, Guarding galleries and terrains, Information
Processing Letters, 100 (2006), 238-245. Running time and the
approximation ratio: (i) For simple polygons, O(nc2

opt log4 n) expected
time, and O(log copt) approximation ratio, where copt is the number of
vertices in the optimal solution. (ii) For polygons with h holes,
O(nhc3

optpolylog n) expected time, O(log n log(copt log n)) approximation
ratio.



4. B. J. Nilsson, Approximate Guarding of Monotone and Rectilinear
Polygons, Proceedings of the 32nd International Colloquium on Automata,
Languages and Programming, Lecture Notes in Computer Science,
Springer-Verlag, no. 3580, pp. 1362-1373, 2005. The paper gives
polynomial time approximation algorithms (i) for monotone polygons and
(ii) for simple orthogonal polygons. Approximation ratios are 12 and 96
respectively.

5. A. Deshpande, T. Kim, E. D. Demaine1 and S. E. Sarma, A
pseudopolynomial time O(log n)-approximation algorithm for art gallery
problems , Proceedings of the 10th International Workshop on Algorithms
and Data Structures, LNCS, Springer-Verlag, no. 4619, pp. 163-174,
2007. Running time: Polynomial in n, the number of walls and the spread,
where the spread can be exponential. Approximation ratio: O(log copt).

6. J. King and D. Kirkpatrick, Improved Approximation for Guarding Simple
Galleries from the Perimeter, Discrete & Computational Geometry,
46(2011) 252-269. Running time: Polynomial in n. Approximation ratio:
O(log log copt)



Heuristics for Stationary Guard Problems

I Recently, efforts are being made to design heuristics to solve stationary
guard problems where the efficiency of these heuristics are evaluated by
experimentation.

I These heuristics essentially follow Ghosh’s method of first discretizing the
entire region of a polygon and then using the minimum set-cover solution.

I However, these heuristics use different criteria for discretization or in
choosing candidate sets.



1. Y. Amit and J. S. B. Mitchell and E. Packer, Locating Guards for Visibility
Coverage of Polygons, Proceedings of the 9th Workshop on Algorithm
Engineering and Experiments (ALENEX’07), SIAM, pp. 120-134, 2007.

2. M. C. Couto and P. J. de Rezende and C. C. de Souza, An exact and
efficient algorithm for the orthogonal art gallery problem, Proceedings of
the 20th Brazilian Symposium on Computer Graphics and Image
Processing, pp. 87-94, 2007.

3. M. C. Couto and P. J. de Rezende and C. C. de Souza, Experimental
evaluation of an exact algorithm for the orthogonal art gallery problem,
Proceedings of the 7th International Workshop on Experimental
Algorithms, LNCS, vol. 5038, pp. 101-113, Springer, Heidelberg, 2008.

4. M. C. Couto and P. J. de Rezende and C. C. de Souza, An IP solution to
the art gallery problem, Proceedings of the 25th Annual ACM Symposium
on Computational Geometry, pp. 88-89, 2009.



Vertex-guard problem
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A simple polygon is called a fan if there exists a vertex that is visible from all
points in the interior of the polygon.

The vertex guard problem can be treated as a polygon decomposition problem
in which the decomposition pieces are fans.
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Vertices 7, 12 and 17 together can see the entire boundary of the polygon but
the shaded region is not visible from any of these vertices.

Three fans (vertices 1, 4 and 7) are necessary to cover the polygon if only edge
extensions are allowed, whereas two fans (vertices 1 and 7) suffice if we allow
the boundary of convex components to be bounded by segments that contains
any two vertices of the polygon.
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The polygonal region of P is decomposed into convex components where every
component is bounded by segments that contains any two vertices of the
polygon.

Every convex component must lie in at least one of the fans chosen by the
approximation algorithm.

Lemma: Every convex component is either totally visible or totally invisible
from a vertex of P.



Minimum set-covering problem
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Minimum set-covering problem: Given a finite family C of sets S1, . . . , Sn, the
problem is to determine the minimum cardinality A ⊆ C such that⋃

i∈A Si =
⋃n

j=1 Sj .

The problem of finding the minimum number of fans to cover P is same as the
minimum set-covering problem, where every fan is a set and convex
components are elements of the set.

1. D. S. Johnson, Approximation algorithms for combinatorial problems,
Journal of Computer and System Sciences, 9 (1974), 256-278.

2. V. Vazirani, Approximation algorithms, Springer, 2003.



Vertex-guard algorithm

Step 1: Draw lines through every pair of vertices of P and compute all convex
components c1, c2, . . . , cm of P. Let C = (c1, c2, . . . , cm), N = (1, 2, . . . , n) and
Q = ∅.
Step 2: For 1 ≤ j ≤ n, construct the set Fj by adding those convex
components of P that are totally visible from the vertex vj .
Step 3: Find i ∈ N such that |Fi | ≥ |Fj | for all j ∈ N and i 6= j .
Step 4: Add i to Q and delete i from N.
Step 5: For all j ∈ N, Fj := Fj − Fi , and C := C − Fi .
Step 6: If |C | 6= ∅ then goto Step 3.
Step 7: Output the set Q and Stop.

Theorem: The approximation algorithm for the minimum vertex guard problem
in a polygon P of n vertices computes solutions that are at most O(log n)
times the optimal. If P is a simple polygon, the approximation algorithm runs
in O(n4) time. If P is a polygon with holes, the approximation algorithm runs
in O(n5) time.



Edge-guard algorithm

Step 1: Draw lines through every pair of vertices of P and compute all convex
components c1, c2, . . . , cm of P. Let C = (c1, c2, . . . , cm), N = (1, 2, . . . , n) and
Q = ∅.
Step 2: For 1 ≤ j ≤ n, construct the set Ej by adding those convex
components of P that are totally visible from the edge ej of P.
Step 3: Find i ∈ N such that |Ei | ≥ |Ej | for all j ∈ N and i 6= j .
Step 4: Add i to Q and delete i from N.
Step 5: For all j ∈ N, Ej := Ej − Ei , and C := C − Ei .
Step 6: If |C | 6= ∅ then goto Step 3.
Step 7: Output the set Q and Stop.
Theorem: For the minimum edge guard problem in an n-sided polygon P, an
approximate solution can be computed which is at most O(log n) times the
optimal. If P is a simple polygon, the approximation algorithm runs in O(n4)
time. If P is a polygon with holes, the approximation algorithm runs in O(n5)
time.



Conjecture

Any set consisting of arbitrary chosen convex components may not form a fan
as every fan consists of contiguous convex components. Therefore,
constructing any example where the greedy algorithm takes O(log n) times
optimal does not seem to be possible.

F1

F3
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F4

F6F5

Conjecture: (Ghosh 1986) Approximation algorithms are expected to yield
solutions within a constant factor of the optimal.



Lower bound on approximation ratio

Regarding the lower bound on the approximation ratio for the problems of
minimum vertex, point and edge guards in simple polygons, it has been shown
that these problems are APX-hard using gap-preserving reductions from
5-OCCURRENCE-MAX-3-SAT.

This means that for each of these problems, there exists a constant ε > 0 such
that an approximation ratio of 1 + ε cannot be guaranteed by any polynomial
time approximation algorithm unless P = NP.

The above statement implies that there may be approximation algorithms for
these problems whose approximation ratios are not small constants.

On the other hand, for polygons with holes, these problems cannot be
approximated by a polynomial time algorithm with ratio ((1− ε)/12)(ln n) for
any (ε > 0), unless NP ⊆ TIME(nO(loglogn)). The results are obtained by using
gap-preserving reductions from the SET COVER problem.



Ghosh’s O(log n)-approximation algorithms are optimal for polygons with holes.

Open problems

Design approximation algorithms for vertex, edge and point guards problems in
simple polygons which yield solutions within a constant factor of the optimal.

1. S. Eidenbenz C. Stamm and P. Widmayer, Inapproximability Results for
Guarding Polygons and Terrains, Algorithmica, 31 (2000), 79-113.

2. P. Bhattachary, S. K. Ghosh and B. Roy, Vertex Guarding in Weak
Visibility Polygons, Proceedings of the 1st International Conference on
Algorithms and Discrete Applied Mathematics, Kanpur, Lecture Notes in
Computer Science, vol. 8959, pp. 45-57, Springer, 2015.



An O(1)-approximation algorithm
We present a 6-approximation algorithm, which has running time O(n2), for
vertex guarding polygons that are weakly visible from an edge uv and contain
no holes.

Our algorithm uses Euclidean shortest path trees from u and v for choosing
vertices for placing guards.

s

z

y

x

ps(y)

ps(x)

ps(z)

Euclidean shortest path tree rooted at s. The parents of vertices x , y and z in
SPT (s) are marked as ps(x), ps(y) and ps(z) respectively.

1. P. Bhattachary, S. K. Ghosh and B. Roy, Vertex Guarding in Weak
Visibility Polygons, Proceedings of the 1st International Conference on
Algorithms and Discrete Applied Mathematics, Kanpur, Lecture Notes in
Computer Science, vol. 8959, pp. 45-57, Springer, 2015.
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A naive algorithm for guarding all vertices
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A naive algorithm for guarding all vertices
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A = {x , y} ; S = {u, pv (x), pu(y), pv (y)}



A naive algorithm for guarding all vertices
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A = {x , y , z} ; S = {u, pv (x), pu(y), pv (y), pu(z), v}



A naive algorithm for guarding all vertices

pv(y)

u v

pv(x)

pu(y)

pu(z)

x
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A = {x , y , z} ; S = {u, pv (x), pu(y), pv (y), pu(z), v}
Observe that |S | = 2|A|



Performance guarantee under a special condition

pv(y)

u v

pu(y)
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Observe that the vertex y ∈ A is such that every vertex lying on the clockwise
boundary between pu(y) and pv (y) [henceforth denoted as bdc(pu(y), pv (y)) ]
is visible from pu(y) or pv (y).

If each vertex z ∈ A is such that every vertex of bdc(pu(z), pv (z)) is visible
from pu(z) or pv (z), then |S | ≤ 2|Sopt | as follows.



Location of an optimal guard for vertex z
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Any guard x ∈ Sopt that sees z must lie on bdc(pu(z), pv (z)).



Location of an optimal guard for vertex z

z

pu(z)

pv(z)

u v

x

Any guard x ∈ Sopt that sees z must lie on bdc(pu(z), pv (z)).
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I All vertices of bdc(pu(z), pv (z)) are visible from pu(z) or pv (z).

I If q is visible from x , then q must be visible from pu(z) or pv (z).
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I All vertices of bdc(pu(z), pv (z)) are visible from pu(z) or pv (z).

I If q is visible from x , then q must be visible from pu(z) or pv (z).
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I All vertices of bdc(pu(z), pv (z)) are visible from pu(z) or pv (z).

I If any point q is visible from x , then q must be visible from pu(z) or pv (z).
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I All vertices of bdc(pu(z), pv (z)) are visible from pu(z) or pv (z)

I If q is visible from x , then q must be visible from pu(z) or pv (z).

I This implies that |A| ≤ |Sopt |.



A bad input polygon for the naive algorithm
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For this input instance, |S | = 2k, whereas Sopt = {u, g}.



A 4-approximation algorithm for guarding all vertices

For the current unmarked vertex z , an invariance is maintained such that every
vertex of bdc(u, z) is visible from some guard in S ∪ {pu(z), pv (z)}.

During the clockwise scan, z may be skipped or added to a new set B.

Case 1: Every vertex lying on bdc(z , pv (z)), except z itself, is either visible
already from guards currently in S or becomes visible if new guards are placed
at pu(z) and pv (z).

z

u v

pv(z)

pu(z)

g2
g1

B = B ∪ {z} ; S = S ∪ {pu(z), pv (z)} ; z = x
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Case 2: There exist some vertices lying on bdc(z , pv (z)), not visible already
from guards currently in S , such that they do not become visible even if new
guards are placed at pu(z) and pv (z).

z

z′

u v
pv(z)

pu(z)

Let z ′ be the next vertex along the clockwise scan that is not visible from any
guard already in S .
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Case 2a: Not every unmarked vertex of bdc(pu(z ′), z ′) is visible from pu(z ′) or
pv (z ′). (Invariance does not hold for z ′.)

z
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u v
pv(z)
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′)

pu(z
′)

pu(z)

q

r

B = B ∪ {z} ; S = S ∪ {pu(z), pv (z)} ; z = x
After these operations, invariance holds for z ′.
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Case 2b: Every unmarked vertex of bdc(pu(z ′), z ′) is visible from pu(z ′) or
pv (z ′). [The vertex z is skipped as z ′ satisfies the invariance.]

z

z′

u v
pv(z)

pv(z
′)

pu(z
′)

pu(z)

B = B ∪ {} ; S = S ∪ {} ; z = z ′

It can be shown that there exists a bipartite graph G = (B ∪ Sopt ,E) such that
(a) the degree of each vertex in B is exactly 1, and, (b) the degree of each
vertex in Sopt is at most 2.

Therefore, |B| ≤ 2|Sopt | and hence, |S | = 2|B| ≤ 4|Sopt |.
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Insufficiency of guards in S to cover all interior points

pv(z)

a1 a2

pu(z)

u v

z

x1 x2

x3

w

All vertices are visible from the guard set S = {pu(z), pv (z)}, but all points in
the triangular interior region x1x2x3 are not visible.

Observe that one of the sides x1x2 of the triangle x1x2x3 is a part of the
polygonal edge a1a2.

In fact, for any such invisible region, one of the sides must always be part of a
polygonal edge.
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Insufficiency of guards in S to cover all interior points
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Multiple invisible regions exist within the polygon that are not visible from the
guard set S = {pu(z), pv (z)}.



Placement of more guards to cover all interior points
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Multiple invisible regions exist within the polygon that are not visible from the
guard set S = {pu(z), pv (z)}.

An additional set of guards S ′ is required to see all these invisible regions.

By traversing in clockwise order, add pu(ci ) and pv (ci ) to S ′ for every ci .

Since a distinct guard in Sopt is required to see every ci as it must belong to
bdc((pu(ci ), pv (ci )), |S ′| ≤ 2|Sopt |. Hence, |S ∪ S ′| ≤ 4|Sopt |+ 2|Sopt | ≤ 6|Sopt |.

Theorem: The approximation algorithm for the minimum vertex guard problem
in an n-sided weak visibility polygon runs in O(n2) time and computes a
solution that is at most six times the optimal.
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Chromatic art gallery problems

Consider a robot that navigates through a polygon and uses different types of
landmarks for orientation.

How many types of such landmarks are necessary such that the robot sees (i)
always at least one landmark and (ii) no two landmarks of the same type?

If landmarks are modeled as colored guards, this corresponds to the art gallery
problem with the additional constraint that no two guards with the same color
are seen from any point in the polygon.

So, the problem is to place color guards in a polygon P, such that
(i) the entire P is visible from the chosen set of guards and
(ii) no two same colored guards are visible from any point of P.

P

g11

g22

g13

g24

Two colors and four guards are sufficient for this polygon.

Such placement of color guards in P is called strong conflict-free coloring of P.
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In some applications, a weaker condition on the coloring is sufficient: Consider
a setting where the robot communicates with wireless sensors and colors
correspond to frequencies.

Communication without interference is possible from any point z in P if among
all guards that are visible from z , there is at least one guard with unique color.

Such placement of color guards in P, where every point z ∈ P sees one guard
whose color is different from all other guards visible from z , is called weak
conflict-free coloring of P.

g11 g12 g13 g14 g15 g16 g17 g18

g29
P

Two colors for guards are sufficient for weak conflict-free coloring of P.

Observe that any strong conflict-free coloring is also a weak conflict-free
coloring.
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g11 g22 g33 g44 g15 g26 g37 g48 g19 g210 g311 g412 g113 g214 g315 g416

P

For a strong conflict-free coloring, a monotone polygon P requires Ω(
√

n).

g11 g12 g13 g14 g15 g16 g17 g18 g19 g110 g111 g112 g113 g114 g115 g116

P
g217

For a weak conflict-free coloring, the same polygon requires 2 colors.

1. L. H. Erickson and S. M. LaValle, An art gallery approach to ensuring that
landmarks are distinguishable, Robotics: Science and Systems, 2011.

2. Andreas Bärtschi and Subhash Suri, Conflict-free chromatic art gallery
coverage, Algorithmica, vol. 68, pp. 265-283, 2014.
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Best known bounds on chromatic guard number

Simple polygon Strong conflict-free
chromatic number

Weak conflict-free
chromatic number

Upper bound bn/3c from art gallery
theorem

O(log n) by Bartschi et al.

lower bound bn/4c by Erickson et al. O((log log n)/(log log log n))
by Hoffmann et al.

Polygon with holes Strong conflict-free
chromatic number

Weak conflict-free
chromatic number

Upper bound
⌊
n+h
3

⌋ ⌊
n+h
3

⌋
lower bound Ω(1) Ω(1)

1. A. Baertschi, S. K. Ghosh, M. Mihalak, T. Tschager and P. Widmayer,
Improved bounds for the conflict-free chromatic art gallery problem,
Proceedings of the 30th ACM Annual Symposium on Computational
Geometry, pp. 144-153, 2014.

2. F. Hoffmann, K. Kriegel and M. Willert, Almost tight bounds for
conflict-free chromatic guarding of orthogonal galleries, CoRR
abs/1412.3984, 2014.



Conflict-free coloring of a weak visibility polygon

P

u v

P is weakly visible from the edge uv .



u

P

v′u′

v

Draw a line segment u′v ′ parallel to uv in P, where u′v ′ is slightly above uv .



u′

P

v′

Every vertex of P is visible from points of an interval on u′v ′.



P

u′ v′

By scanning interval from the left to right, place guards on u′v ′ such that the
entire P is visible from these guards.



P

u′
v′

Take the middle guard among the guards on u′v ′ and color it with red.



u′

PP

v′

Take the middle guard among the guards on the left of red guard, and color it
with green.

Similarly, take the middle guard among the guards on the right of red guard,
and color it with green.



u′

PP

v′

Take the middle guard among the guards on the left of red guard, and color it
with green.

Similarly, take the middle guard among the guards on the right of red guard,
and color it with green.



P

u′ v′

The process of coloring continues recursively.



P

u′ v′

Any point z of P sees an unique colored guard.

Theorem: A weak conflict-free coloring of a weak visibility polygon P can be
done with O(log n) colors.



P

u′ v′

Any point z of P sees an unique colored guard.

Theorem: A weak conflict-free coloring of a weak visibility polygon P can be
done with O(log n) colors.



Conflict-free coloring of a simple polygon

u

P

v

Since P is weakly visible from uv , one set of O(log n) colors are enough.



u

P

v

P is not weakly visible from uv .
(i) One additional set of O(log n) color is required for left pockets.
(ii) Another set of O(log n) color is required for right pockets.



u

P

v

Theorem: A weak conflict-free coloring of a simple polygon P can be done
with three sets of O(log n) colors.



Concluding remarks

Art Gallery and related visibility problems form a fascinated area of research in
Discrete and Computational Geometry.

Over the last five decades, many theorems and algorithms have been designed
for these problems. However, several problems remain unsolved.

I am fortunate to be associated with this area of research from its very early
days.

I had the great opportunity to interact and collaborate with many researchers
in India and abroad over a long period of time.

I certainly look forward to Indo-German collaboration in the coming years.

Thank you very much indeed.
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