
Introduction to Computational Geometry

Subir Kumar Ghosh
School of Technology & Computer Science
Tata Institute of Fundamental Research

Mumbai 400005, India
ghosh@tifr.res.in

Overview

1. Background

2. Time and space complexity

3. Polygon inclusion problems

4. Intersection problems

5. Convex hull problem

6. Polygon triangulation

7. Ary Gallery problem

8. Concluding remarks

Background

◮ Computational Geometry is concerned with the computational
complexity of geometric problems within the framework of
analysis of algorithms.

◮ Before computational geometry was accepted as a
well-defined discipline in 80’s, two groups of researchers were
working very close to the field.

◮ The first group, obviously, consists of mathematicians,
particularly geometers.

◮ The second group consists of researchers in computer
application areas such as pattern recognition, computer
graphics, image processing, VLSI design, computer-aided
design and robotics.

◮ Though geometric problems form the kernel of investigation
to both the groups, their approaches to the problems are
entirely different.

◮ The former group studies geometry with the intention of
discovering properties of geometric objects. In contrast to
that, the researchers of the latter group attempts to develop
geometric algorithms for its application to real world problems.

◮ These two approaches indeed leave a big gap in studying
geometric problems.

◮ In order to bridge the gap, the discipline “Computational
Geometry” had evolved with an aim to extract out and exploit
the properties of geometric objects that make an algorithm
more efficient.

Time and Space Complexity

◮ In order to define an efficient algorithm, we need the notation
O(f (n)) to measure the time and space complexity of the
algorithm, where n is the size of the input to the algorithm.

◮ The notation O(f (n)) denotes the set of all functions g(n)
such that there exist positive constants c and n0 with
|g(n)| ≤ c |f (n)| for all n ≥ n0.

◮ We assume that addition, subtraction, multiplication, division
and comparisons on real numbers can be performed in unit
time.

◮ In addition, various other operations such as indirect
addressing of memory (integer address only), computing the
intersection of two lines, computing the distance between two
points, testing whether the angle is convex are also available.
These operations are assumed to take constant execution of
time.

◮ Using this “O” notation, let us explain what an efficient
algorithm means.

◮ Consider the problem of sorting of numbers x1, x2, .., xn.

◮ A naive algorithm for sorting takes O(n2) time.

◮ Using the technique of divide-and-conquer, sorting can be
done in O(n log n) time and this algorithm can be called
efficient since it is faster than the naive algorithm of O(n2)
time.

Polygon

P

P

A polygon P is given as a counterclockwise or clockwise sequences
of vertices with their respective x and y coordinates and no three
vertices of P are collinear.

If the boundary of P consists of two or more cycles, then P is
called a polygon with holes. Otherwise, P is called a simple

polygon or a polygon without holes.

Polygon inclusion problems

z

Problem: Given a simple polygon P and a point z , determine
whether z is internal to P .

z

Theorem: Whether a point is internal to a simple polygon of n

vertices can be determined in O(n) time.

Polygon query problem

◮ Suppose we have m points z1, z2, ..., zm and a simple polygon
P of n vertices, and we wish to know for all i , whether zi

(called query point) is internal to P .

◮ Using the above method, we can report the answer by
spending O(n) time for each query point zi . Therefore, the
total time required is O(nm).

◮ If m is very large compare to n, this method is certainly
inefficient. Can we do better?

Problem: Given a simple polygon P and a query point z ,
determine whether z is internal to P .

Convex polygon query problem

z

C

Problem: Given a convex polygon C and a query point z ,
determine whether z is internal to C .

C
z

q

◮ Vertices of C are in sorted angular order with respect to any
internal point q of P .

◮ The entire plane can be divided into wedges.
◮ The wedge containing z can be located by binary search.

Theorem: Whether a query point z is internal to a convex
polygon C of n vertices can be determined in O(log n) query time
with O(n) preprocessing time using O(n) space.

Star-shaped polygon query problem

P
z

q

Problem: Given a star-shaped polygon P and a query point z ,
determine whether z is internal to P .

Theorem: Whether a query point z is internal to a star-shaped
polygon P of n vertices can be determined in O(log n) query time
with O(n) preprocessing time using O(n) space.

Simple polygon inclusion problem

z

P

SLAB

◮ Draw horizontal lines through each vertex of P dividing the
plane into n + 1 horizontal strips called “slabs”.

◮ Sort these slabs by y -coordinate as a preprocessing step.

◮ Perform a binary search to locate the query point z in a slab.

◮ Within this slab, perform a binary search to locate the query
point z in a trapezoid.

z

P

Theorem: Whether a query point z is internal to a simple polygon
of n vertices can be determined in O(log n) time using O(n2 log n)
preprocessing time and O(n2) space.

Polygon intersection problem

P

Q

Problem: Given two simple polygons P and Q of n and m

vertices, compute their intersection.

Can there be O(nm) intersection points between edges of P and
Q?

P

Q

Theorem: Computing the intersection of two simple polygons of n

and m vertices requires O(nm) time in the worst case.

Convex polygon intersection problem

P

Q

Theorem: The intersection of two convex polygons of n and m

vertices can be computed in O(n + m) time.

Testing polygons intersection

P

Q

Problem: Given two simple polygons P and Q of n and m

vertices, do they intersect?

Problem: Given n line segments in the plane, determine whether
any two intersect?

Theorem: Intersection of simple polygons is linear time
transformable to line-segment intersection testing.

Plane-sweep technique

a

c

d

b

e

◮ Sweep a vertical line from left to right.

◮ The left endpoint of a segment is encountered. In this case,
the segment is added to the ordering.

◮ The right endpoint of a segment is encountered. In this case,
the segment is removed from the ordering.

◮ The intersection point of two segments is reached. Here the
segments exchange places in the ordering.

Theorem: Whether any two of n line segments in the plane
intersect can be determined in O(n log n) time, and it is optimal.

Theorem: The problem of detecting the intersection of two simple
polygons of n and m vertices can be determined in
O((n + m) log(n + m) time in the worst case.

Theorem: The intersection type of two star-shaped polygons can
be determined in linear time.

Convex hull

S

Problem: Given a set of n points in the plane, compute the
convex hull of S .

The convex hull of S is the smallest convex set containing all
points of S .

A naive algorithm

S

u

v

◮ For every pair of points u and v , draw the line Luv passing
through u and v .

◮ If every point of S lie on one side of Luv , take uv as a convex
hull edge.

◮ Therefore, the convex hull of S can be computed in O(n3)
time.

◮ Is it possible to compute the convex hull of S in O(n2) time?

Divide and Conquer technique

◮ “Divide and Conquer” is a general paradigm for solving
problems in computer science.

◮ The essence is to partition the problem into two (nearly) equal
halves.

◮ Solve the problem for each half recursively.

◮ Create a full solution by “merging” the two half solutions.

◮ Let T (n) be the time complexity of a divide and conquer hull
algorithm. If merging step can be done in linear time, then
T (n) = T (n/2) + O(n). Hence, T (n) = O(n log n).

Convex hull algorithm

A B

◮ Divide S into two sets A and B of nearly equal size.
◮ Compute the convex hulls of A and B recursively.
◮ Construct tangents between the convex hulls of A and B .
◮ Remove the appropriate portions of the convex hulls of A and

B to construct the convex hull of S .

Theorem: The convex hull of a set of n points can be computed
in O(n log n) time and it is optimal.

Polygon triangulation

P P

A line segment joining any two mutually visible vertices of a
polygon is called a diagonal of the polygon.

Lemma: Every triangulation of a simple polygon P of n vertices
uses n − 3 diagonals and has n − 2 triangles.

Corollary: The sum of the internal angles of a simple polygon of n

vertices is (n − 2)π.

Lemma: The dual of a triangulation of P is a tree.

Lemma: Every polygon P has at least two disjoint ears.

PP

Lemma: Every triangulation of a polygon with h holes with a total
of n vertices uses n + 3h− 3 diagonals and has n + 2h− 2 triangles.

Lemma: The dual graph of a triangulation of a polygon with holes
must have a cycle.

Art gallery problem

P

Guard 2

Guard 1

An art gallery can be viewed as a polygon P with or without holes
with a total of n vertices and guards as points in P .

An art gallery can be viewed as a polygon P with or without holes
with a total of n vertices and guards as points in P .

During a conference at Stanford in 1976, Victor Klee asked the
following question:

How many guards are always sufficient to guard any polygon with
n vertices?

1. R. Honsberger, Mathematical games II, Mathematical
Associations for America, 1979.

Chvatal’s art gallery theorem

1

2

1

1

21

2

3

1

3

3

3

1

2

PP

32

2

Theorem: A simple polygon P of n vertices needs at most ⌊n

3
⌋

guards.
Lemma: All vertices of P can be coloured using three colours (say,
{1, 2, 3}) such that two vertices joined by an edge of P or by a
diagonal in the triangulation of P receive different colours.

1. V. Chvatal, A combinatorial theorem in plane geometry,
Journal of Combinatorial Theory, Series B, 18 (1975), 39-41.

2. S. Fisk, A short proof of Chvatal’s watchman theorem,
Journal of Combinatorial Theory, Series B, 24 (1978), 374.

Different types of guards

mobile guard

edge guard

P

◮ Point guards: These are guards that are placed anywhere in
the polygon.

◮ Vertex guards: These are guards that are placed on vertices of
the polygon.

◮ Edge guards: These are guards that are allowed to patrol
along an edge of the polygon.

◮ Mobile guards: These are guards that are allowed to patrol
along a segment lying inside a polygon.

Minimum number of guards

Let P be a polygon with or without holes. What is the minimum
number of guards required for guarding a polygon P with or
without holes?

Suppose, a positive integer k is given. Can it be decided in
polynomial time whether k guards are sufficient to guard P?

The problem is NP-complete.

Theorem: The minimum vertex, point and edge guard problems
for polygons with or without holes (including orthogonal polygons)
are NP-hard.

Theorem: The minimum vertex and point guard problems for
orthogonal polygons with or without holes are NP-hard.

Further Reading

1. M. de Berg, M. Van Kreveld, M. Overmars and O.
Schwarzkopf, Computational Geometry: Algorithms and

Applications, Springer, 1997.

2. S.K. Ghosh, Visibility Algorithms in the Plane, Cambridge
University Press, Cambridge, UK, 2007.

3. J. O’Rourke, Art gallery theorems and algorithms, Oxford
University Press, 1987.

4. J. O’Rourke, Computational Geometry in C, Cambridge
University Press, New York, USA, 1998.

5. F. P. Preparata and M.I. Shamos, Computational Geometry:

An Introduction, Springer-Verlag, New York, USA, 1990.

Concluding remarks

◮ In this talk, we have presented a few basic algorithms and
techniques of computational geometry which were designed in
the late 70’s and early 80’s.

◮ In the last three decades, several algorithms have been
designed for many interesting geometry problems in two and
higher dimensions.

◮ The main impetus for the development of geometric
algorithms came from the progress in computer graphics,
computer-aided design and manufacturing.

◮ In addition, algorithms are also designed for geometric
problems that are classical in nature.

◮ The success of the field can be explained from the beauty of
the geometry problems studied, the solutions obtained, and by
the many application domains- computer graphics, geographic
information systems, robotics and others, in which geometric
algorithms play a crucial role.

Thank You.

