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APPLICATIONS OF NETWORK THEORY 
•  World Wide Web and hyperlink structure 
•  The Internet and router connectivity 
•  Collaborations among 

–  Movie actors 
–  Scientists and mathematicians 

•  Romantic relationships 
•  Cellular networks in biology 
•  Food webs in ecology 
•  Phone call patterns 
•  Word co-occurrence in text 
•  Neural network connectivity of flatworms 
•  Conformational states in protein folding 
 
 
 



WEB APPLICATIONS OF SOCIAL 
NETWORKS 
• Analyzing page importance 

– Page Rank 
•  Related to  recursive in-degree computation 

– Authorities/Hubs 
• Discovering Communities 

– Finding near-cliques  
• Analyzing Trust 

– Propagating Trust 
– Using propagated trust to fight spam 

•  In Email 
•  In Web page ranking  



People are represented as 
nodes. 

 
Relationships are 

represented as edges. 
 

 (Relationships may be 
acquaintanceship, friendship, 
co-authorship, etc.) 

 

Allows analysis using tools of 
graph theory 

SOCIETY AS A GRAPH 



HISTORY 

• 17th century: Spinoza developed first model 

• 1937: J.L. Moreno introduced sociometry; he 
also invented the sociogram  

• 1948: A. Bavelas founded the group networks 
laboratory at MIT; he also specified centrality 



HISTORY 

•  1949: A. Rapaport developed a probability based 
model of information flow 

•  50s and 60s: Distinct research by individual 
researchers 

•  70s: Field of social network analysis emerged. 

– New features in graph theory – more general 
structural models 

– Better computational power – analysis of complex 
relational data sets 



CONNECTIONS 

•  Size   
–  Number of nodes 

•  Density  
–  Number of ties that are present  the amount of ties that could be present 

•  Out-degree  
–  Sum of connections from an actor to others  

•  In-degree  
–  Sum of connections to an actor  



DISTANCE 

•  Walk  

–  A sequence of actors and relations that begins and ends with actors  

•  Geodesic distance  
–  The number of relations in the shortest possible walk from one actor to 

another  

•  Maximum flow  
–  The amount of different actors in the neighborhood of a source that lead 

to pathways to a target 



SOME MEASURES OF POWER  & 
PRESTIGE 
 

• Degree 
– Sum of connections from or to an actor 

•  Transitive weighted degreeàAuthority, hub, pagerank 

• Closeness centrality 
– Distance of one actor to all others in the network 

• Betweenness centrality 
– Number that represents how frequently an actor is 

between other actors’ geodesic paths 



CLIQUES AND SOCIAL ROLES  
 

• Cliques  
–  Sub-set of actors  

•  More closely tied to each other than to actors who are not part 
of the sub-set 

–  (A lot of work on “trawling” for communities in the web-graph) 
–  Often, you first find the clique (or a densely connected subgraph) 

and then try to interpret what the clique is about 

•  Social roles  
– Defined by regularities in the patterns of relations among 

actors 



OUTLINE 

Small Worlds 
 
Random Graphs 
 
Alpha and Beta 
 
Power Laws 
 
Searchable Networks 
 
Six Degrees of Separation 



THE KEVIN BACON GAME 
Invented by Albright College students 

in 1994: 
–  Craig Fass, Brian Turtle, Mike Ginelly 

 

Goal: Connect any actor to Kevin 
Bacon, by linking actors who have 
acted in the same movie. 

 
Oracle of Bacon website uses Internet 

Movie Database (IMDB.com) to find 
shortest link between any two 
actors: 

 
 http://oracleofbacon.org/ 

 

Boxed version of the 
Kevin Bacon Game 



THE KEVIN BACON GAME 

Kevin Bacon 

An Example 

Tim Robbins 

Om Puri 

Amitabh Bachchan 

Yuva (2004) 

Mystic River (2003) 

Code 46 (2003) 

Rani Mukherjee 
Black (2005) 



ACTUALLY AMITABH BACHCHAN HAS 
A BACON NUMBER 2 

                  



THE KEVIN BACON GAME 
Total # of actors in database:     

~550,000 
 
Average path length to Kevin:  

  2.79 
 
Actor closest to “center”:  

 Rod Steiger (2.53) 
 
Rank of Kevin, in closeness to 

center:    876th  
 
Most actors are within three 

links of each other! 
Center of Hollywood? 



ERDŐS NUMBER  
(BACON GAME FOR RESEARCHERS J ) 

Number of links required to connect 
scholars to Erdős, via co-authorship 
of papers 

 
Erdős wrote 1500+ papers with 507 

co-authors.   
 
Jerry Grossman’s (Oakland Univ.) 

website allows mathematicians to 
compute their Erdos numbers: 

 
   http://www.oakland.edu/enp/ 
 
Connecting path lengths, among 

mathematicians only: 
–  average is 4.65 
–  maximum is 13 

Paul Erdős (1913-1996)  

Unlike Bacon, Erdos has  
better centrality in his network  



ERDŐS NUMBER 

Paul Erdős – S. B. Rao – Sushmita Ruj – Arindam Pal   

     

My Erdős number is 3. 



SIX DEGREES OF SEPARATION:  
MILGRAM (1967) 
  

The experiment: 

 
•  Random people from Nebraska were to 

send a letter (via intermediaries) to a 
stock broker in Boston. 

•  Could only send to someone with 
whom they were on a first-name basis. 

 

Among the letters that found the 
target, the average number of links 
was six. 

 

Stanley Milgram (1933-1984)



SIX DEGREES OF 
SEPARATION 

John Guare wrote a play called Six 
Degrees of Separation, based on this 
concept.   

 

 

 

 

 

“Everybody on this planet is separated by only six other people.  Six degrees of 
separation.  Between us and everybody else on this planet. The president of the United 
States. A gondolier in Venice… It’s not just the big names. It’s anyone. A native in a rain 
forest. A Tierra del Fuegan. An Eskimo.  I am bound to everyone on this planet by a trail 
of six people…” 



RANDOM GRAPHS 

N nodes 
 
A pair of nodes has probability p 

of being connected. 
 
Average degree, k = p(N – 1) 
 
What interesting things can be said 

for different values of p or k ? 
 (in the limit as N à ∞) 

 
 

Erdős and Renyi (1959) 
p = 0.0 ; k = 0 

N = 12 

p = 0.09 ; k = 1 

p = 1.0 ; k ≈ N 



RANDOM GRAPHS 
Erdős and Renyi (1959) 

p = 0.0 ; k = 0 

p = 0.09 ; k = 1 

p = 1.0 ; k = N - 1 

p = 0.045 ; k = 0.5 

Let’s look at… 

Size of the largest connected cluster 

Diameter (maximum path length) of the largest cluster  

Average path length between nodes (if a path exists) 



RANDOM GRAPHS 
Erdős and Renyi (1959) 

p = 0.0 ; k = 0 p = 0.09 ; k = 1 p = 1.0 ; k ≈ N p = 0.045 ; k = 0.5 

Size of largest component 

Diameter of largest component 

Average path length between (connected) nodes 

1 5 11 12 

0 4 7 1 

0.0 2.0 4.2 1.0 



RANDOM GRAPHS 

If k < 1: 
–  small, isolated clusters 
–  small diameters 

–  short path lengths 

 
At k = 1: 

–  a giant component appears 
–  diameter peaks 
–  path lengths are high 

 
For k > 1: 

–  almost all nodes are connected 

–  diameter shrinks 
–  path lengths shorten 

 

Erdős and Renyi (1959) 
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RANDOM GRAPHS 

What does this mean? 
 
•  If connections between people can be modeled as a random 

graph, then… 

–  Because the average person easily knows more than one person (k  >> 
1), 

–  We live in a “small world” where within a few links, we are connected 
to anyone in the world. 

–  Erdős and Renyi showed that average  
 path length between connected nodes is   

Erdős and Renyi (1959) 

k
N

ln
ln



RANDOM GRAPHS 

What does this mean? 
 
•  If connections between people can be modeled as a random 

graph, then… 

–  Because the average person easily knows more than one person (k  >> 
1), 

–  We live in a “small world” where within a few links, we are connected 
to anyone in the world. 

–  Erdős and Renyi computed average  
 path length between connected nodes to be:   

Erdős and Renyi (1959) 

k
N

ln
ln

BIG “IF”!!! 



RANDOM VS. REAL SOCIAL NETWORKS 
•  Random network models introduce an 

edge between any pair of vertices with 
a probability p 

–  The problem here is NOT 
randomness, but rather the 
distribution used (which, in this case, 
is uniform) 

•  Real networks are not exactly like 
these 

–  Tend to have a relatively few 
nodes of high connectivity (the 
“Hub” nodes) 

–  These networks are called “Scale-
free” networks 

•  Macro properties scale-invariant 



DEGREE DISTRIBUTION & POWER 
LAWS 

But, many real-world networks exhibit a power-law 
distribution. 

            àalso called “Heavy tailed” distribution 

 

Degree distribution of a random graph, 
N = 10,000   p = 0.0015   k = 15. 

(Curve is a Poisson curve, for comparison.) Typically 2<r<3. For web graph  
 r ~ 2.1 for in degree distribution 
     2.7 for out degree distribution 
 

Note that poisson decays exponentially 
 while power law decays polynomially 

Long tail 

k-r 

Sharp drop  

Rare events are  
 not so rare! 



PROPERTIES OF POWER LAW 
DISTRIBUTIONS 

• Ratio of area under 
the curve [from b to 
infinity] to [from a to 
infinity] =(b/a)1-r 

– Depends only on the 
ratio of b to a and not 
on the absolute values 

– “scale-free”/ “self-
similar” 

• A moment of order m 
exists only if r>m+1 

a b 



POWER LAWS 
 
Power-law distributions are straight 

lines in log-log scale. 
-- slope being r 

y=k-r à log y = -r log k à ly= -r lk 
   

 
How should random graphs be generated 

to create a power-law distribution of 
node degrees? 

 
Hint:   

 Pareto’s* Law:  Wealth distribution 
follows a power law. 

 

Albert and Barabasi (1999) 

Power laws in real networks: 
(a) WWW hyperlinks 
(b) co-starring in movies 
(c) co-authorship of physicists 
(d) co-authorship of neuroscientists

* Same Velfredo Pareto, who defined Pareto optimality in game theory. 



ZIPF’S LAW: POWER LAW DISTRIBUTION 
BETWEEN RANK AND FREQUENCY 

•  In a given language corpus, what 
is the approximate relation 
between the frequency of a kth 
most frequent word and (k+1)th 
most frequent word? 

For s>1 

Most popular word is twice as 
 frequent as the second most 
 popular word! 

Law of categories in Marketing… 

Word freq in wikipedia 

f=1/r 



WHAT IS THE EXPLANATION FOR 
ZIPF’S LAW? 

•  Zipf’s law is an empirical law in that it is observed rather than 
proved. 

•  Many explanations have been advanced as to why this holds. 
•   Zipf’s own explanation was “principle of least effort” 

–  Balance between speaker’s desire for a small vocabulary and hearer’s 
desire for a large one (so meaning can be easily disambiguated) 

•  Alternate explanation— “rich get richer” –popular words get 
used more often 

•  Li (1992) shows that just random typing of letters with space 
will lead to a “language” with Zipfian distribution..  



HEAP’S LAW: A COROLLARY OF 
ZIPF’S LAW 

• What is the relation 
between the size of a 
corpus (in terms of words) 
and the size of the lexicon 
(vocabulary)? 

– V = K nb 
– K ~ 10—100 
– b ~ 0.4 – 0.6 

•  So vocabulary grows as a 
square root of the corpus 
size.. 

Explanation? 
  --Assume that the corpus is  
      generated by randomly 
      picking words from a  
      zipfian distribution.. 

Notice the impact of Zipf on generating 
  random text corpuses! 



BENFORD’S LAW 
(AKA FIRST DIGIT PHENOMENON) 

How often does the digit 1 appear in 
numerical data describing natural 
phenomenon? 

–  You would expect 1/9 or 11% 

D
igression begets its ow

n digression 

                      
1 0.30103 6 0.0669468 
2 0.176091 7 0.0579919 
3 0.124939 8 0.0511525 
4 0.09691 9 0.0457575 

5 0.0791812 

This law holds so well in practice 
 that it is used to catch forged data!! 

http://mathworld.wolfram.com/BenfordsLaw.html 

WHY? 
  Iff there exists a universal distribution, 
   it must be scale invariant (i.e.,  
   should work in any units) 
    à starting from there we can show that 
   the distribution must satisfy the differential eqn 
     x P’(x) = -P(x)   
For which, the solution is P(x)=1/x ! 



POWER LAWS & SCALE-FREE 
NETWORKS 

“The rich get richer!” 
 
 
Power-law distribution of 

node-degree arises if 
    (but not “only if”)  

–  As Number of nodes grow 
edges are added in proportion 
to the number of edges a 
node already has. 

•  Alternative: Copy model—
where the new node copies 
a random subset of the links 
of an existing node  

–  Sort of close to the WEB 
reality 

 
 

Examples of Scale-free networks 
(i.e., those that exhibit power 
law distribution of in degree) 

•  Social networks, including 
collaboration networks. An 
example that have been 
studied extensively is the 
collaboration of movie actors in 
films.  

•  Protein-interaction networks.  
•  Sexual partners in humans, 

which affects the dispersal of 
sexually transmitted diseases.  

•  Many kinds of 
computer networks, including 
the World Wide Web.  



SCALE-FREE NETWORKS 

•  Scale-free networks also exhibit small-world 
phenomena 

–  For a random graph having the same power law distribution 
as the Web graph, it has been shown that 

•  Average path length = 0.35 + log10 N 
• However, scale-free networks tend to be more brittle 

– You can drastically reduce the connectivity by deliberately 
taking out a few nodes 

•  This can also be seen as an opportunity.. 
– Disease prevention by quarantaining super-spreaders  

•  As they actually did to poor Typhoid Mary..  



ATTACKS VS. DISRUPTIONS 
ON SCALE-FREE VS. RANDOM NETWORKS 

•  Disruption 
–  A random percentage of the 

nodes are removed 
•  How does the diameter change? 

–  Increases monotonically and 
linearly in random graphs 

–  Remains almost the same in scale-
free networks  

•  Since a random sample is 
unlikely to pick the high-degree 
nodes 

 

•  Attack 
–  A percentage of nodes are 

removed willfully (e.g. in 
decreasing order of connectivity) 

•  How does the diameter change? 
–  For random networks, essentially 

no difference from disruption 
•  All nodes are approximately 

same 
–  For scale-free networks, diameter 

doubles for every 5% node 
removal! 

•  This is an opportunity when you 
are fighting to contain spread… 



EXPLOITING/NAVIGATING SMALL-WORLDS 

•  Case 1: Centralized access to 
network structure 

–  Paths between nodes can be 
computed by shortest path 
algorithms 

•  E.g. All pairs shortest path 
–  ..so, small-world ness is trivial 

to exploit..  
•  This is what ORKUT, 

Friendster etc are trying to 
do..  

•  Case 2: Local access to 
network structure 

–  Each node only knows its own 
neighborhood 

–  Search without children-
generation function L 

–  Idea 1: Broadcast method 
•  Obviously crazy as it 

increases traffic everywhere 
–  Idea 2: Directed search 

•  But which neighbors to 
select?  

•  Are there conditions under 
which decentralized search 
can still be easy? 

How does a node in a social network find a path to another node? 
   à 6 degrees of separation will lead to n6 search space (n=num neighbors) 
                 àEasy if we have global graph.. But hard otherwise 

Computing one’s Erdos number used to take days in the past! 

There are very few “fully decentralized” 
  search applications. You normally  
   have hybrid methods between Case 1 and Case 2 



SEARCHABILITY IN SMALL WORLD 
NETWORKS 

•  Searchability is measured in terms of Expected time to go from a random 
source to a random destination 

–  We know that in Smallworld networks, the diameter is exponentially smaller than 
the size of the network.  

–  If the expected time is proportional to some small power of  log N, we are doing 
well 

Qn: Is this always the case in small world networks? 
•  To begin to answer this we need to look generative 

models that take a notion of absolute (lattice or 
coordinate-based) neighborhood into account 

 
Kleinberg experimented with Lattice networks (where the network is 

embedded in a lattice—with most connections to the lattice 
neighbors, but a few shortcuts to distant neighbors) 

 
 and found that the answer is “Not always”   

Kleinberg (2000) 



NEIGHBORHOOD BASED RANDOM 
NETWORKS 

•  Lattice is d-dimensional (d=2). 
•  One random link per node. 
•  Probability that there is a link 

between two nodes u and v is 
r(u,v)- α  

–  r(u,v) is the “lattice” distance 
between u and v (computed as 
manhattan distance) 

•  As against geodesic or network 
distance computed in terms of 
number of edges 
–  E.g. North-Rim and South-Rim 

-   α determines how steeply the 
probability of links to far away 
neighbors reduces 

 View of the world from 9th Ave 



SEARCHEABILITY IN 
LATTICE NETWORKS 

•  For d=2, dip in time-to-search at 
α=2 

–  For low α, random graph; no 
“geographic” correlation in links 

–  For high α, not a small world; no 
short paths to be found. 

•  Searcheability dips at α=2 
(inverse square distribution), in 
simulation 

•  Corresponds to using greedy 
heuristic of sending message to the 
node with the least lattice distance 
to goal 

•  For d-dimensional lattice, 
minimum occurs at α=d 



SEARCHABLE NETWORKS 

Watts, Dodds, Newman (2002) 
show that for d = 2 or 3, real 
networks are quite 
searchable.   

       àthe dimensions are 
things like “geography”, 
“profession”, “hobbies” 

 
Killworth and Bernard (1978) 

found that people tended to 
search their networks by d = 
2: geography and profession. 

Kleinberg (2000) Ramin 
Zabih 

Kentaro 
Toyama 

The Watts-Dodds-Newman model 
closely fitting a real-world experiment



DIDN’T MILGRAM’S LETTER EXPERIMENT  
 SHOW THAT NAVIGATION IS EASY? 

• …may be not 
– A large fraction of his test subjects were stockbrokers  

•  So are likely to know how to reach the “goal” stockbroker 
– A large fraction of his test subjects were in boston 

•  As was the “goal” stockbroker 
– A large fraction of letters never reached  

•  Only 20% reached 
•  So how about (re)doing Milgram experiment with 

emails? 
–  People are even more burned out with (e)mails now 

•  Success rate for chain completion < 1% ! 



N E I G H B O R H O O D  B A S E D  
G E N E R AT I V E  M O D E L S  

THESE ESSENTIALLY 
GIVE MORE LINKS TO 
CLOSE NEIGHBORS.. 



THE ALPHA MODEL 

The people you know aren’t 
randomly chosen. 

 

 

People tend to get to know those 
who are two links away (Rapoport 
*, 1957). 

 

 

The real world exhibits a lot of 
clustering. 

Watts (1999) 

* Same Anatol Rapoport, known for TIT FOR TAT! 

The Personal Map 
by MSR Redmond’s Social Computing Group 



THE ALPHA MODEL 
α model:  Add edges to nodes, as in 

random graphs, but makes links 
more likely when two nodes have a 
common friend. 

 
 
For a range of α values: 
 

–  The world is small (average path 
length is short), and 

–  Groups tend to form (high 
clustering coefficient). 

 
 

Watts (1999) 

Probability of linkage as a function 
of number of mutual friends 

(α is 0 in upper left, 
1 in diagonal, 

and ∞ in bottom right curves.) 



THE ALPHA MODEL 
α model:  Add edges to nodes, as in 

random graphs, but makes links 
more likely when two nodes have a 
common friend. 

 
 
For a range of α values: 
 

–  The world is small (average path 
length is short), and 

–  Groups tend to form (high 
clustering coefficient). 

 
 

Watts (1999) 
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Clustering coefficient (C) and  
average path length (L) 

plotted against α



THE BETA MODEL 
Watts and Strogatz (1998) 

β = 0 β = 0.125 β = 1 

People know 
others at 
random. 

 
Not clustered, 

but “small world” 

People know 
their neighbors, 

and a few distant people. 
 

Clustered and 
“small world” 

People know  
their neighbors. 

 
 

Clustered, but 
not a “small world” 



THE BETA MODEL 
 
First five random links reduce the 

average path length of the network 
by half, regardless of N! 

 
 
Both α and β models reproduce short-

path results of random graphs, but 
also allow for clustering. 

 
 
Small-world phenomena occur at 

threshold between order and chaos. 

Watts and Strogatz (1998) Nobuyuki 
Hanaki 

Jonathan 
Donner 

Kentaro 
Toyama 
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Clustering coefficient (C) and average  

path length (L) plotted against β



SEARCHABLE NETWORKS 

Just because a short path exists, 
doesn’t mean you can easily find it. 

 

 

You don’t know all of the people 
whom your friends know. 

 

 

Under what conditions is a network 
searchable? 

 

Kleinberg (2000) 



SUMMARY  
•  A network is considered to exhibit small world phenomenon, if 

its diameter is approximately the logarithm of its size (in terms 
of number of nodes) 

•  Most uniformly random networks exhibit small world 
phenomena 

•  Most real-world networks are not uniformly random 
–  Their in-degree distribution exhibits power-law behavior 
–  However, most power-law random networks also exhibit small world 

phenomena 
–  But they are brittle against attack 

•  The fact that a network exhibits small world phenomenon 
doesn’t mean that an agent with strictly local knowledge can 
efficiently navigate it (i.e, find paths of O(log(n)) length 

–  It is always possible to find the short paths if we have global knowledge 
•  This is the case in the FOAF (friend of a friend) networks on the web 
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