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Introduction

Scope

Scope of the lecture

Characterisation of Planar Graphs: First we introduce planar
graphs, and give its characterisation and some simple
properties.

Planarity Testing: Next, we give an algorithm to test planarity.

Planar Embedding: Lastly we see how a given planar graph
can be embedded in a plane.
We also explore straight line embeddings.
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Introduction

Definition

What is a Drawing?

Definition (Drawing)

Given a graph G = (V,E), a drawing maps each vertex v ∈ V to a
distinct point Γ(v) in plane, and each edge e ∈ E, e = (u, v) to a
simple open jordan curve Γ(u, v) with end points Γ(u), Γ(v).

a

b

cd

e

Γ(a)
Γ(b)

Γ(c)

Γ(e)

Γ(d)

Figure: Drawing of a graph
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Introduction

Definition

What is a Planar Graph?

Definition (Planar Graphs)

Given a graph G = (V,E), G is planar if it admits a drawing such
that no two distinct drawn edges intersect except at end points.

a

b

cd

e

Γ(a)
Γ(b)

Γ(c)

Γ(e)

Γ(d)

Figure: Planar drawing of a graph
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Introduction

Motivation

Properties of Planar Graphs

There are number of interesting properties of planar graphs.

They are sparse. There size including faces, edges and vertices
is O(n).

They are 4-colourable.

A number of operations can be performed on them very
efficiently. Since there is a topological order to the incidences.

They can be efficiently stored (A data structure called
SPQR-trees even allows O(1) flipping of planar embeddings).
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Introduction

Motivation

Applications of Planar Graphs

Planar graphs are extensively used in Electrical and Civil
engineering.

Easy to visualize. In fact, crossings reduces comprehensibility.
So all good graph drawing tools use planar graphs.

VLSI design, circuit needs to be on surface: lesser the
crossings, better is the design.

Highspeed Highways/Railroads design, crossings are always
problematic.

Irrigation canals, crossings simply not admissible.

Determination of isomorphism of chemical structures.

Most of facility location problems on maps are actually
problems of planar graphs.
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Introduction

Problem

Problem Definition: Planarity Testing

Problem (Decision Problem)

Given a graph G = (V,E), is G planar, i.e., can G be drawn in the
plane without edge crossings?
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Introduction

Problem

Problem Definition: Planarity Embedding

Problem (Computation Problem)

Given a graph G = (V,E), if G is planar, how can G be drawn in
the plane such that there are no edge crossings? I.e., compute a
planar representation of the graph G.
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Introduction

Problem

Question: K4?

Is the following graph (K4) planar?

1

2

3

4

Figure: Graph K4
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Introduction

Problem

Answer: K4 is planar

Yes, K4 is planar!

1

2

3

4

Figure: Planar K4
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Introduction

Problem

Question: K5 and K3,3?

Are the following graphs (K5 and K3,3) planar?

1

2

34

5

1

2

3

1’

2’

3’

Figure: Graphs K5 and K3,3
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Introduction

Problem

Answer: K4 is planar

No!! They aren’t. There always will be at least one crossing.

1

2

34

5

1

2

3

1’

2’

3’

Figure: Non-planarity of K5 and K3,3

Full proofs by Euler’s celebrated theorem.
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Introduction

Problem

Question: Is a given graph planar?

Is the following graph planar?
There are a lot of crossings O(n2).
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22

Figure: A Hamiltonian Graph
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Introduction

Problem

Answer: Yes

Yes, it is.
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Figure: Planar embedding of the given graph

But, how to arrive at this answer? It is tough.
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Characterisation of Planar Graphs

Euler’s Relation

Basic Assumptions

Euler’s formula gives the necessary condition for a graph to be
planar[3].

We assume that our graphs are connected and there are no self
loops and no multi-edges.

Disconnected graphs, 1-degree vertices, multi-edges can be easily
dealt with.
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Characterisation of Planar Graphs

Euler’s Relation

Euler’s Relation for nodes, arcs and faces1

Theorem (Euler’s Relation)

Given a planar graph with n vertices, m edges and f faces:

n−m + f = 2

1

2 3 4

A Planar Graph :
n = |V | = 6,
m = |E| = 8, and
f = |F | = 4
6− 8 + 4 = 2

1The exterior is also counted as a face. The above relation also applies to
simple polyhedrons with no holes.
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Characterisation of Planar Graphs

Euler’s Relation

Euler’s Relation for nodes, arcs and faces

Theorem (Euler’s Relation)

Given a planar graph with n vertices, m edges and f faces:

n−m + f = 2

A Planar Graph :
n = |V | = 17,
m = |E| = 24, and
f = |F | = 9
17− 24 + 9 = 2
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Characterisation of Planar Graphs

Euler’s Relation

Euler’s Relation for nodes, arcs and faces

dv edges
deleted

dv − 1 faces,
1 vertex
deleted

Proof: We prove Euler’s Relation by
Mathematical Induction on vertices.

If we remove one vertex v on boundary
(don’t delete a cut vertex) with dv
edges, then we are removing dv − 1
faces.

Thus the invariant n−m + f = 2 is
maintained.

Basis is an isolated vertex,
n = f = 1,m = 0.�
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Characterisation of Planar Graphs

Euler’s Relation

Euler’s Relation: Corollary 1

Corollary

For a maximal planar graph, where each face is a triangle,
m = 3n− 6, and therefore, for any planar graph with at least three
vertices, we should have: m ≤ 3n− 6.

Proof:
∑

f∈F ef = 2m and therefore
since

ef ≥ 3 ⇒ ∑
f∈F ef ≥ 3f ⇒

2m ≥ 3f .

Substituting in n−m + f = 2 gives us
n−m + 2m/3 ≥ 2 �
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Characterisation of Planar Graphs

Euler’s Relation

Euler’s Relation: Corollary 1

Example to show m ≤ 3n− 6.

Figure: Octahedron: n = 6,m = 12, m ≤ 3n− 6
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Characterisation of Planar Graphs

Euler’s Relation

Non-planarity of K5

Earlier we said that K5 is non-planar.

Lemma

K5 is non-planar.

1

2

34

5

Figure: Proof: n = 5,m = 10, m > 3n− 6 (= 9) �
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Characterisation of Planar Graphs

Euler’s Relation

Euler’s Relation: Corollary 2

Corollary

For a planar graph, where no face is a triangle: m ≤ 2n− 4.

Proof:
∑

f∈F ef = 2m and therefore since

ef ≥ 4 ⇒ ∑
f∈F ef ≥ 4f ⇒ 2m ≥ 4f .

Substituting in n−m + f = 2 gives us n−m + m/2 ≥ 2 �

Above relation is true for bi-partite planar graphs and graphs with
no 3-cycle.
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Characterisation of Planar Graphs

Euler’s Relation

Euler’s Relation: Corollary 2

Example to show m ≤ 2n− 4 for graphs without triangles.

Figure: Cube : n = 8,m = 12, m ≤ 2n− 4
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Characterisation of Planar Graphs

Euler’s Relation

Non-planarity of K3,3

Earlier we said that K3,3 is non-planar.

Lemma

K3,3 is non-planar.

1

2

3

1’

2’

3’

Figure: Proof: n = 6,m = 9, m > 2n− 4 (= 8) �
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Characterisation of Planar Graphs

Euler’s Relation

Euler’s Relation: Corollary 3

Corollary

Any planar graph is 6 colourable.

x

Proof:

Since m ≤ 3n− 6, there exists a vertex with degree less than
6 (otherwise

∑
v dv = 2m⇒ 2m ≥ 6n).

By induction, if we remove this vertex, resulting graph is
6-colourable.

Just give this vertex a colour other than the five colours of the
neighbours.

�
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Characterisation of Planar Graphs

Euler’s Relation

Euler’s Relation: Corollary 4

Corollary

Any planar graph is 5 colourable.
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Characterisation of Planar Graphs

Euler’s Relation

5-Colorability of planar graphs

Proof:

The neighbours of a 5-degree vertex aren’t all connected.

Take one such pair and do the following:

u

v
v

u

x
x

Figure: u and v are not connected

By induction, if we remove the vertex x and v, resulting graph
is 5-colourable.

Just give v same colour as u, and x a colour other than the 4
colours of the neighbours.

�
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Characterisation of Planar Graphs

Euler’s Relation

Insufficiency of Euler’s Conditions

Euler’s conditions are necessary but not sufficient, for example join
K5 and K3,3 by an edge.

Figure: n = 11,m = 20,m ≤ 3n− 6

However, above graph is non-planar.
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Characterisation of Planar Graphs

Kuratowski’s and Wagner’s Theorems

Kurotowski’s and Wagner’s Theorem for Planar Graphs
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Characterisation of Planar Graphs

Kuratowski’s and Wagner’s Theorems

Kuratowski’s and Wagner’s Theorems

Next we look at Kuratowski’s and Wagner’s Theorems for
conditions of sufficiency.

Before stating the theorems, we need to understand subdivisions
and minors of a graph.
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Characterisation of Planar Graphs

Kuratowski’s and Wagner’s Theorems

What are subdivisions and minors of a graph?

Subdivision

Minor

Figure: Subdivisions and Minors

Subdividing an edge in a planar (non-planar) graph does not
make it non-planar (planar).
Shrinking an edge of a planar graph to make a single vertex
does not make it non-planar.
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Characterisation of Planar Graphs

Kuratowski’s and Wagner’s Theorems

What are subdivisions and minors of a graph?

Subdivision

Minor

Figure: Subdivisions and Minors

In a way subdivision and minors are complementary. In subdivisions
we add a vertex and in minors we remove a vertex.
A graph is planar iff its subdivision is planar.
However, if a graph is planar then its minor is planar.
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Characterisation of Planar Graphs

Kuratowski’s and Wagner’s Theorems

Kuratowski’s Theorem

Fact

Subdividing any edge means replacing the edge with a path of
length 2.

Theorem (Kuratowski’s Theorem[6])

G is planar iff G contains no sub-division of K5 or K3,3.

As noted earlier, subdividing an edge in a planar graph does not
make it non-planar.
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Characterisation of Planar Graphs

Kuratowski’s and Wagner’s Theorems

Wagner’s Theorem

An alternate characterisation of planar graphs by Wagner[10].

Theorem (Wagner’s Theorem)

G is planar iff G contains no subgraph which has K5 or K3,3 as
minor.

See [4] for yet another characterisation by Harary and Tutte.
As noted earlier, shrinking an edge of a planar graph to make a
single vertex does not make it non-planar.
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Characterisation of Planar Graphs

Kuratowski’s and Wagner’s Theorems

Necessity of Subdivisions or Minors

Can we do away with subdivisions or minors?

Algorithmically, checking all minors or subdivisions is very
expensive for planarity testing. Exponential if checked naively.

Checking K5 or K3,3 as subgraphs is much efficient, at least it
is polynomial.

Why do we need subdivisions or minors? Aren’t subgraphs
sufficient?

We show a non-planar graph which does not have a K5 or
K3,3 as a subgraph. So, answer is no.
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Characterisation of Planar Graphs

Kuratowski’s and Wagner’s Theorems

Peterson’s Graph

Figure: Peterson’s Graph

A graph which doesn’t have K5 or K3,3 as a subgraph.
However, it has a subdivision of K3,3 and both K5 and K3,3 as
minors.
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Characterisation of Planar Graphs

Kuratowski’s and Wagner’s Theorems

Non-planarity of Peterson’s Graph

Figure: Kuratowski’s theorem applied to the peterson’s graph

Peterson Graph has a subdivision of K3,3 . The same subgraph can
be shrunk to get K3,3 as minor.
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Characterisation of Planar Graphs

Kuratowski’s and Wagner’s Theorems

Non-planarity of Peterson’s Graph

Figure: Wagner’s theorem applied to the peterson’s graph

Peterson Graph has K5 as a minor.
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Characterisation of Planar Graphs

Proof of Kuratowski’s theorem

Necessity Proof of Kuratowski’s Theorem

1

2

34

5

Proof: (of necessity) Necessity immediately follows from
non-planarity of K5 and K3,3.
Any subdivison of K5 and K3,3 is also non-planar. �
Necessity condition of Wagner’s theorem can also be proved easily.
Shrinking edges will not change planarity. So, if we get K5 or K3,3

by shrinking edges, then initial subgraph must be non-planar to
start with.
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Characterisation of Planar Graphs

Proof of Kuratowski’s theorem

Sufficiency proof of Kuratowski’s Theorem

Proof: (of sufficiency) Proof of sufficiency is a little difficult.

Suppose G is non-planar.

First we remove edges and vertices of a non-planar graph such
that it becomes a minimal non-planar graph. I.e. removing
any edge will make the resulting graph planar.

We ask: How does removing an edge of a non-planar graph
make it planar?

u v

Somehow we always need to join the vertices for the last edge,
inside and outside of a bad cycle.
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Characterisation of Planar Graphs

Proof of Kuratowski’s theorem

Sufficiency proof of Kuratowski’s Theorem (contd.)

u v

Why can’t we move u or v to the other side?
This cycle must be such that u and v are always on the opposite
sides. There must be something which is stopping us bringing to
the same side.
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Characterisation of Planar Graphs

Proof of Kuratowski’s theorem

Sufficiency proof of Kuratowski’s Theorem (contd.)

u
v

A

A

B

B

B

B

Components (minus cycle) containing u and v are conflicting with
each other.
Conflict only depends on placement of attachments.
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Characterisation of Planar Graphs

Proof of Kuratowski’s theorem

Sufficiency proof of Kuratowski’s Theorem (contd.)

All the conflicting cases can be brought under !! a finite number of
cases !!.

u vu

v

Both component has a pair of attachments that has
uncommon attachments which are alternating.

Both components have all common attachments, which
number more than three.

The dangling path to u and v may be empty.
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Characterisation of Planar Graphs

Proof of Kuratowski’s theorem

Sufficiency proof of Kuratowski’s Theorem (contd.)

These are another bunch of two cases

u
v u

v

One or both of the components have only one attachment,
but u connects to v of non-enclosing attachments.

All uncommon attachment pairs are non-alternating with at
most one common attachment in between, but v connects to
u in between non-alternating attachments.

The dangling path to u and v may be empty. We also need to
have some additional paths.
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Characterisation of Planar Graphs

Proof of Kuratowski’s theorem

Sufficiency proof of Kuratowski’s Theorem (contd.)

What if the components aren’t like what was shown?

Then we can bring both the components on the same side and
look for another cycle.

We repeat until we get to the above cases. At every step we
decrease at least one crossing.

We show the other cases in the next slide where we can switch
sides.

53 / 151



Planar Graphs, Planarity Testing and Embedding

Characterisation of Planar Graphs

Proof of Kuratowski’s theorem

Sufficiency proof of Kuratowski’s Theorem (contd.)

A few other non-conflicting cases are (for the sake of fuller
argument):

One or both of the components have only one attachment
and uv as below.
There are only two common attachments and
All uncommon attachment pairs are non-alternating with at
most one common attachment in between with uv as below.

u v
u

v

u

v
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Characterisation of Planar Graphs

Proof of Kuratowski’s theorem

Sufficiency proof of Kuratowski’s Theorem (contd.)

So, in the conflicting cases, we get:

u v

u
v

Either there is a pair of uncommon alternating attachments which
conflict or common triplet of conflicting attachments as above
(with at least one dangling path not at junction for triplet case).
We get K3,3’s subdivision.
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Characterisation of Planar Graphs

Proof of Kuratowski’s theorem

Sufficiency proof of Kuratowski’s Theorem (contd.)

u v

Or, there are three common attachments but which make
conflicting attachments as above. The dangling paths are at
junction. We get K5’s subdivision.
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Characterisation of Planar Graphs

Proof of Kuratowski’s theorem

Sufficiency proof of Kuratowski’s Theorem (contd.)

For the other two cases mentioned, I show only single crossings of
uv, multiple are similar.

u
v u

v

We get K3,3’s subdivision.
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Characterisation of Planar Graphs

Proof of Kuratowski’s theorem

Sufficiency proof of Kuratowski’s Theorem (contd.)

Thus it can be shown that

Lemma

If G is non-planar it must contain either a sub-division of K3,3 or
K5.
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Planarity Testing of Graphs

Planarity Testing of Graphs
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Planarity Testing of Graphs

Checking for Kuratowski’s & Wagner’s conditions

Testing Planarity using Kuratowski’s Theorem

Question is—How to apply Kuratowski’s theorem?

A direct application is an exponential method.
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Planarity Testing of Graphs

Checking for Kuratowski’s & Wagner’s conditions

Testing Planarity using Kuratowski’s Theorem (contd.)

To test for K5’s subdivision:

Choose 5 vertices of G. There are
(
n
5

)
choices.

Check if all 5 vertices are connected by
(
5
4

)
= 10 distinct

paths as in K5. No. of paths is exponential.

To test for K3,3’s subdivision:

Choose 6 vertices of G. There are
(
n
6

)
choices.

Check if 6 vertices are connected by 3× 3 = 9 distinct paths
as in K3,3. No. of paths is exponential.

Hard to see how both can be done in sub-exponential time.
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Planarity Testing of Graphs

Checking for Kuratowski’s & Wagner’s conditions

Testing Planarity using Kuratowski’s Theorem (contd.)

To test for K5’s subdivision:

Choose 5 vertices of G. There are
(
n
5

)
choices.

Check if all 5 vertices are connected by
(
5
4

)
= 10 distinct

paths as in K5. No. of paths is exponential.

To test for K3,3’s subdivision:

Choose 6 vertices of G. There are
(
n
6

)
choices.

Check if 6 vertices are connected by 3× 3 = 9 distinct paths
as in K3,3. No. of paths is exponential.

Hard to see how both can be done in sub-exponential time.

62 / 151



Planar Graphs, Planarity Testing and Embedding

Planarity Testing of Graphs

Checking for Kuratowski’s & Wagner’s conditions

Testing Planarity using Kuratowski’s Theorem (contd.)

To test for K5’s subdivision:

Choose 5 vertices of G. There are
(
n
5

)
choices.

Check if all 5 vertices are connected by
(
5
4

)
= 10 distinct

paths as in K5. No. of paths is exponential.

To test for K3,3’s subdivision:

Choose 6 vertices of G. There are
(
n
6

)
choices.

Check if 6 vertices are connected by 3× 3 = 9 distinct paths
as in K3,3. No. of paths is exponential.

Hard to see how both can be done in sub-exponential time.

63 / 151



Planar Graphs, Planarity Testing and Embedding

Planarity Testing of Graphs

Checking for Kuratowski’s & Wagner’s conditions

Testing Planarity using Wagner’s Theorem

To test for a K5 or K3,3 minor:

Choose an edge of G (m choices).

Shrink it.

If 6 vertices are remaining check for K3,3.

If 5 vertices are remaining check for K5.

Repeat.

This is easier to understand. However, worst case is still O(m!).
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Planarity Testing of Graphs

Checking for Kuratowski’s & Wagner’s conditions

Testing Planarity using Wagner’s Theorem

To test for a K5 or K3,3 minor:

Choose an edge of G (m choices).

Shrink it.

If 6 vertices are remaining check for K3,3.

If 5 vertices are remaining check for K5.

Repeat.

This is easier to understand. However, worst case is still O(m!).
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Planarity Testing of Graphs

Checking for Kuratowski’s & Wagner’s conditions

Kurotowski’s and Wagner’s Conditions are not useful

Conclusion: both are obviously exponential time algorithms.

How can we do it more efficiently?
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Planarity Testing of Graphs

Hopcroft and Tarjan’s Algorithm Preliminaries

Hopcroft and Tarjan’s Planarity Testing Algorithm
&

Planar Embedding by Mehlhorn and Mutzel[5, 7, 8]
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Planarity Testing of Graphs

Hopcroft and Tarjan’s Algorithm Preliminaries

Basic Assumption

We assume the given graph is connected.

We further assume the given graph is bi-connected.

We get to biconnectivity in a moment.
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Planarity Testing of Graphs

Hopcroft and Tarjan’s Algorithm Preliminaries

Preliminaries

Figure: Disconnected
Components

Fact

Disconnected components can be
tested for planarity separately.
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Planarity Testing of Graphs

Hopcroft and Tarjan’s Algorithm Preliminaries

Basic Assumptions-II

What is a biconnected or 2-connected graph?

u

v

G

Figure: Biconnected
Graph

Definition

A graph G is biconnected iff every pair
of vertices u and v are connected by at
least two vertex disjoint paths except
at u and v, which are end points.
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Planarity Testing of Graphs

Hopcroft and Tarjan’s Algorithm Preliminaries

Basic Assumptions-II

Is the following graph bi-connected?

u

v

G

Yes! Above graph has every pair of vertices connected to each
other by two vertex disjoint paths.
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Basic Assumptions-II

Is the following graph bi-connected?

u

v

u

v

G

Yes! Above graph has every pair of vertices connected to each
other by two vertex disjoint paths.
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Basic Assumptions-II

What is a biconnected or 2-connected graph? Is the following
graph bi-connected?

u

v

G

No! Above graph is not a bi-connected graph. Every path from u
to v has to pass through w, so there can only be one path. w is
called cut-vertex.
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Basic Assumptions-II

What is a biconnected or 2-connected graph? Is the following
graph bi-connected?

u

v

u v

w

G

No! Above graph is not a bi-connected graph. Every path from u
to v has to pass through w, so there can only be one path. w is
called cut-vertex.
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Preliminaries

Figure: Biconnected
Components

Fact

Biconnected components can be tested
for planarity separately.
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Preliminaries

Figure: Biconnected
Components

Fact

Sometimes we may need to embed a
biconnected component inside a face.
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General Idea

Now Let us have a general idea of the algorithm.

We will take a simple example. And see how we can test planarity
following Hopcroft and Tarjan’s Method.
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v1
v2

v3v4

v5

v6
v7

v8
v9

v10

Idea: Given the graph above how will we test for planarity?

First we do a DFS, and mark the tree edges.After suitably ordering the edges, we get a big cycle.Emanating edges from the cycle form segments.We test first segment for planarity.We compute the segments of the subgraph.First segment is planar.We test third segment for planarity.We compute the segments of the subgraph.Third segment is planar.We embed all the segments back in the original cycle.Thus the above graph is planar.

78 / 151



Planar Graphs, Planarity Testing and Embedding

Planarity Testing of Graphs

Hopcroft and Tarjan’s Algorithm Preliminaries

General Idea

1

2

3

4

5

6

7 8

9

10

v8

v7

v2

v3

v4

v5

v6

v1
v9

v10v1
v2

v3v4

v5

v6
v7

v8
v9

v10

Idea:

Given the graph above how will we test for planarity?

First we do a DFS, and mark the tree edges.

After suitably ordering the edges, we get a big cycle.Emanating edges from the cycle form segments.We test first segment for planarity.We compute the segments of the subgraph.First segment is planar.We test third segment for planarity.We compute the segments of the subgraph.Third segment is planar.We embed all the segments back in the original cycle.Thus the above graph is planar.
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Idea:

Given the graph above how will we test for planarity?First we do a DFS, and mark the tree edges.

After suitably ordering the edges, we get a big cycle.

Emanating edges from the cycle form segments.We test first segment for planarity.We compute the segments of the subgraph.First segment is planar.We test third segment for planarity.We compute the segments of the subgraph.Third segment is planar.We embed all the segments back in the original cycle.Thus the above graph is planar.
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Idea:

Given the graph above how will we test for planarity?First we do a DFS, and mark the tree edges.After suitably ordering the edges, we get a big cycle.

Emanating edges from the cycle form segments.

We test first segment for planarity.We compute the segments of the subgraph.First segment is planar.We test third segment for planarity.We compute the segments of the subgraph.Third segment is planar.We embed all the segments back in the original cycle.Thus the above graph is planar.
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Idea:

Given the graph above how will we test for planarity?First we do a DFS, and mark the tree edges.After suitably ordering the edges, we get a big cycle.Emanating edges from the cycle form segments.

We test first segment for planarity.

We compute the segments of the subgraph.First segment is planar.We test third segment for planarity.We compute the segments of the subgraph.Third segment is planar.We embed all the segments back in the original cycle.Thus the above graph is planar.
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Idea:

Given the graph above how will we test for planarity?First we do a DFS, and mark the tree edges.After suitably ordering the edges, we get a big cycle.Emanating edges from the cycle form segments.We test first segment for planarity.

We compute the segments of the subgraph.

First segment is planar.We test third segment for planarity.We compute the segments of the subgraph.Third segment is planar.We embed all the segments back in the original cycle.Thus the above graph is planar.

83 / 151



Planar Graphs, Planarity Testing and Embedding

Planarity Testing of Graphs

Hopcroft and Tarjan’s Algorithm Preliminaries

General Idea

4

5

1

2

3
S((3, 4))

4

5

1

2

3
S((3, 4))

4

2

3
S((4, 2))

4

5

3
S((4, 5))

Idea:

Given the graph above how will we test for planarity?First we do a DFS, and mark the tree edges.After suitably ordering the edges, we get a big cycle.Emanating edges from the cycle form segments.We test first segment for planarity.We compute the segments of the subgraph.

First segment is planar.

We test third segment for planarity.We compute the segments of the subgraph.Third segment is planar.We embed all the segments back in the original cycle.Thus the above graph is planar.
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Idea:

Given the graph above how will we test for planarity?First we do a DFS, and mark the tree edges.After suitably ordering the edges, we get a big cycle.Emanating edges from the cycle form segments.We test first segment for planarity.We compute the segments of the subgraph.First segment is planar.

We test third segment for planarity.

We compute the segments of the subgraph.Third segment is planar.We embed all the segments back in the original cycle.Thus the above graph is planar.
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Idea:

Given the graph above how will we test for planarity?First we do a DFS, and mark the tree edges.After suitably ordering the edges, we get a big cycle.Emanating edges from the cycle form segments.We test first segment for planarity.We compute the segments of the subgraph.First segment is planar.We test third segment for planarity.

We compute the segments of the subgraph.

Third segment is planar.We embed all the segments back in the original cycle.Thus the above graph is planar.
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Idea:

Given the graph above how will we test for planarity?First we do a DFS, and mark the tree edges.After suitably ordering the edges, we get a big cycle.Emanating edges from the cycle form segments.We test first segment for planarity.We compute the segments of the subgraph.First segment is planar.We test third segment for planarity.We compute the segments of the subgraph.

Third segment is planar.

We embed all the segments back in the original cycle.Thus the above graph is planar.
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Idea:

Given the graph above how will we test for planarity?First we do a DFS, and mark the tree edges.After suitably ordering the edges, we get a big cycle.Emanating edges from the cycle form segments.We test first segment for planarity.We compute the segments of the subgraph.First segment is planar.We test third segment for planarity.We compute the segments of the subgraph.Third segment is planar.

We embed all the segments back in the original cycle.

Thus the above graph is planar.
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Idea:

Given the graph above how will we test for planarity?First we do a DFS, and mark the tree edges.After suitably ordering the edges, we get a big cycle.Emanating edges from the cycle form segments.We test first segment for planarity.We compute the segments of the subgraph.First segment is planar.We test third segment for planarity.We compute the segments of the subgraph.Third segment is planar.We embed all the segments back in the original cycle.

Thus the above graph is planar.
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Planarity Testing Example : Summary
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Figure: Testing of planarity of a simple graph
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Figure: Testing of planarity of a simple graph
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Planarity Testing : Key Ideas

Data structures used are very simple, sets maintained as lists or
double-ended lists at most.

But we do the recursive step in big-Oh of number of segments and
lenght of spine.

There are four salient features of the algorithm.
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First Feature

First salient feature

1

2

3

4
5

Figure: Outside-in Embed
Order

The Edges are reordered in a certain
way to embed segments outside in.
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Second Feature

Second salient feature

C (e)

AL ARe

e′

A(e′)

Stem

Spine

A(e)

Figure: Bottom-up
Segment Recursion

We find a primary cycle and embed
segments recursively bottom-up on
either side of the cycle.
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Third Feature

Third salient feature

A B

C

D

E

F

G

A B

C

D

E

F
G

Figure: Interlacing graph

Interlacing graph is maintained to
check conflicts between the segments.
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Fourth Feature

Fourth salient feature
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Figure: Left or Right
Embedding

To embed we need to keep blocks of
conflicting segments together, which
allows us to switch side efficiently, as
well as telling us whether to order
adjacency lists clockwise or
anticlockwise.
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Planarity Testing : Key Ideas

Four salient features of the Hopcroft and Tarjan’s Algorithm.

The Edges are reordered in a certain way to embed segments
outside in.

We find a primary cycle and embed segments recursively
bottom-up on either side of the cycle.

Interlacing graph is maintained to check conflicts between the
segments.

To embed we need to keep blocks of conflicting segments
together, which allows us to switch side efficiently, as well as
telling us whether to order adjacency lists clockwise or
anticlockwise.

We have already used first three ideas in the example shown before.
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Planarity Testing : Key Ideas

Four salient features of the Hopcroft and Tarjan’s Algorithm.

The Edges are reordered in a certain way to embed segments
outside in.

We find a primary cycle and embed segments recursively
bottom-up on either side of the cycle.

Interlacing graph is maintained to check conflicts between the
segments.

To embed we need to keep blocks of conflicting segments
together, which allows us to switch side efficiently, as well as
telling us whether to order adjacency lists clockwise or
anticlockwise.

We have already used first three ideas in the example shown before.
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Basic Assumptions-I

We assume the following.

The given graph G does not have self loops or multi-edges.

G is undirected and satisfies m ≤ 3n− 6.

G is connected. This also means there won’t be isolated
vertices.
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Basic Assumptions-II

We further assume.

v

G

G

G′

v

G′

G is bi-connected2. If G is not, we find cut-vertices and test
the planarity of each bi-connected component separately.

We can embed the component in a face incident to the cut
vertex3.

2So no vertex is of degree 1.
3Actually we can make any face of a planar graph the outer face.
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Preliminaries
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Figure: DFS numbering

We rename each vertex as its dfs
number for the sake of clarity.
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Preliminaries

Tree edges

Fronds

No cross edges

No forward edges

In DFS we also mark the edges as tree edges or back
edges(fronds). There are no cross edges or forward edges.
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Preliminaries

C

S1

S2

S3

S4

S5

S6
S7

S8

S9

Every cycle is simple cycle in planar
embedding.
A cycle divides the graph into
segments to be embedded.
Each tree-edge and frond emanating
from the cycle is a separate segment.
C exists because of biconnectivity.
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Preliminaries

C(e0)

Stem(e)

Spine(e)

e

C(e)
e0

Segment of e, S(e)

We embed the segments recursively.
Each segment (also called branch)
corresponds to a tree-edge or frond
emanating from the cycle in question.
We define stem and spine of edge e
which forms cycle C(e) with e and a
frond.
The segment can be embedded on one
side of stem but on both sides of spine.

104 / 151



Planar Graphs, Planarity Testing and Embedding

Planarity Testing of Graphs

Hopcroft and Tarjan’s Algorithm Preliminaries

Preliminaries

1

2

3

4
5

Embedding order

We wish to embed the segments
outside in, so any conflicts can be
easily detected.
For this we take the segments bottom
up and in a particular sorted order for
the same node.
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Outline of Algorithm - Stage I

We are now in a position to present our algorithm.
Preprocessing Step - 1

First we find out bi-connected components of the given graph
G.

Test planarity of each bi-connected component individually. If
all are planar then G is planar.

We assume for clarity that bi-connected component itself is G.

We do a depth-first-search and compute all tree edges and
backedges (fronds).

We rename vertices with their dfs numbers.
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Oultline of Algorithm - Stage II

L1(4) = 1,L2(4) = 2
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L1

L2

We need to sort the adjacency list of each node. So we define
lowpoints — L1 and L2 for each vertex.
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Lowpoints — L1 and L2

We define lowpoints L1(u) and L2(u) for each vertex as follows.
Let D(u) be set of all descendants of u and T (u) be set of all
neighbours of D(u).

Definition

L1(u) = min{T (u)}
L2(u) = min{T (u)− {L1(u)}}
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Lowpoints Facts — L1 and L2

Fact

Since G is 2-connected graph, it has no cut-vertices, so we can
conclude that L1(v) < u whenever u is parent of v and u is not
the root node. It follows that L2(v) ≤ u.

Fact

Low-points are well-defined, since every vertex has atleast 2
neighbours.
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Oultline of Algorithm - Stage II

Type-I Type-II

Type I and Type II

There are two types of segments. One with only two attachments
is called Type I and another with multiple attachments is called
Type II.
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Oultline of Algorithm - Stage II

How to calculate Type-I and Type-II segments.

Type-I Type-II

u = L2

v
u

v
u

v

L2

L2

L1 L1 L1

Type I and Type II

A branch (segment) Bu(v), where u is parent of v, with L2(v) = u
is a type I branch. If L2(v) < u it is a type II branch.
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Oultline of Algorithm - Stage II

Fact

Any number of Type-I with common attachments can be
embedded inside each other. Once we get Type-II, only one can be
embedded.

So we need to sort the adjacency list so that Type-I segments
occur before Type-II.
We reorder edges of a vertex so that components are added on the
tree in increasing depth of where they are attached on the DFS
tree.
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Oultline of Algorithm - Stage II

Some segments with same starting point are shown below with
their sorting keys.
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Oultline of Algorithm - Stage II
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I

The weight of edge uv is defined as

wtu(v) =


2v if uv is a frond with v < u
2L1(v) if u is parent of v and L2(v) = u
2L1(v) + 1 if u is parent of v and L2(v) < u
2n + 1 otherwise
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Reordering of Edges — Example

r

a
b

c

u
v

s x
w

t

12

3
4

5

6

Figure: DFS tree and Lowpoints

At vertex u the branches (segments) are embedded in the order
Bu(x), ua, Bu(v), ub, Bu(w), and ut
Since wtu[x] = 2r < wtu[a] = 2a < wtu[v] = 2a + 1 < wtu[b] =
2b = wtu[w] < wtu[t] = 2n + 1.
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Outline of Algorithm - Stage II

Preprocessing Step - 2

During DFS we also calculate two lowpoint arrays L1(v)’s and
L2(v)’s.

We sort the adjacency lists according to the criteria of
lowpoints. Use bucket sort to do it in overall linear time (keys
range from 1 to 2n + 1).

There is one cycle starting from root ending there, and we try
to embed G branch by branch recursively.
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Outline of Algorithm - Stage III

Theorem

G is planar iff each branch (segment) can be embedded on one
side of its stem (defined as strongly planar). Stem is the part from
L1 point to the beginning of the branch.

This enables us to check conflict only on the basis of attachments
to the cycle.
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Outline of Algorithm - Stage III

Figure: Cycle of segments

The way ordering of edges is done, the cycle is always formed by
the first of children till a frond is encountered to the stem.

Further root has one child only (because of biconnectivity).
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Outline of Algorithm - Stage III

Ordering of Adj[u] by weights is not sufficient to guarantee that an
embedding is possible without further refinement.

Figure: Conflicting Fronds and Segments

If there is a conflict then we must embed on the opposite sides of
the current path from root.
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Outline of Algorithm - Stage III

C (e)

AL ARe

e′

A(e′)

Stem

Spine

A(e) We process segments bottom-up.
We maintain two lists of left and right
attachments AL and AR as stacks.
These are enough to check if there will
be conflicts.
But sometimes we need to move the
segments from left to right!!!
We need to return AL, i.e., A(e), after
successful checking of planarity of
S(e).
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Outline of Algorithm - Stage III

For keeping tabs on which segment conflicts which one, we
compute interlacing graph.

A B

C

D

E

F

G

A B

C

D

E

F
G

Interlacing graph must be bipartite. While switching we switch all
the segments in a connected component.
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Outline of Algorithm - Stage III

It is easy to see that we have now an O(n3) algorithm. Computing
interlacing graph itself is O(n2) in each recursive step and there
are O(n) recursive steps.

To do it in overall O(n) we need to compute interlacing graph
implicitly, without computing all its edges. It sufficies if connected
components remain connected.

Even O(n) time per recursion won’t do. We need to do it in linear
time of number of segments and length of spine.
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Outline of Algorithm - Stage III
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LBD RBD

ALBD ARBD

For that we need to treat all the conflicting segments as a block.
When a block is known to conflict with another block, we combine
them (union) and stitch the attachment lists (they are two ALB
and ARB for each block).
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Outline of Algorithm - Stage III
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LBD RBD

ALBD ARBD

Now we do not switch side for individual segments, we switch a
block. Switching involves linking it to other side (LB and RB for
each block). Since all blocks are stitched together, all of them
switch sides.

For embedding we assign the side a segment ,i.e., left or right after
the whole process is over.
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Outline of Algorithm - Stage III

Implicit computation of interlacing graph.

Bi−1

Bi

· · ·

Bh

Bh+1

Bi−1

Bh+1

Maintenance of Interlacing graph over the tree-edge (current
segment) is easy. There is an order to blocks (can be seen as
stack).
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Outline of Algorithm - Stage III

We are in a position to give our main processing step.

We embed the whole graph using the DFS tree T branch by
branch bottom-up. First cycle will have empty stem.

We first determine an ordering of adj(u) for each u so that the
segments are guaranteed to permit an embedding when G is
planar.
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Outline of Algorithm - Stage III

Main Processing Step
Algorithm to check strong planarity of S(e)

Since G is bi-connected, initially we will have a cycle C(e)
found by following the first children.
So we have an embedding of C(e) in the plane, with the
segments to be arranged around C(e).
Each segment in turn is embedded recursively bottom-up. We
get its list of attachments on the stem.
Then, following Hopcroft and Tarjan, we keep two linked lists
of fronds, AL and AR containing the fronds and branches
embedded on the left of C(e) and on the right of C(e) ,
respectively.
AL and AR can be viewed as stacks, whose tops contain the
number of the vertex currently marking the upper limit in the
tree to which fronds may be embedded.
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Outline of Algorithm - Stage III

Main Processing Step (contd.)

We also construct the conflict graph of branches in LB and
RB for each block, as IG which is a bipartite graph.

Then AL and AR are unions of ALB’s and ARB’s of each
block.

After embedding every segment we return A(e), the
attachments on the stem (i.e. by default AL).

We also assign the side of each segment before returning.
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K5 Planarity Testing

How does K5 fare in our algorithm?
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45

Figure: Testing of Planarity for K5

Last segment conflicts with both AL and AR. (Only 1-level
recursion.)
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K3,3 Planarity Testing

How does K3,3 fare in our algorithm?

2

4
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1
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Figure: Testing of Planarity for K3,3

Last segment conflicts with both AL and AR. (Only 1-level
recursion.)
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Embedding Phase of Planarity Algorithm

Though Hopcroft and Tarjan gave the algorithm to test the
planarity, they could not use it to give a planar embedding[5].

It took Mehlhorn and Mutzel another twelve years to show how
Hopcroft and Tarjan’s algorithm can be used to embed a planar
graph[8].

It simply means that embedding is not as obvious as it seems.
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Embedding Phase of Planarity Algorithm

Theorem

Let G be a biconnected planar graph. Then we can embed G in
the plane in linear time[5, 8, 7].
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Embedding : Key Ideas
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Same Reverse

Figure: Adjacency List: Clockwise or Anti-clockwise?

Adjacency lists are arranged clockwise or anti-clockwise depending
on whether the segment is embedded left of the cycle or right of
the cycle.
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Embedding Phase of Planarity Algorithm

Embedding : Key Ideas

Will be

Need to embed

modified later

now, but may
change sides
later

Figure: Adjacency List: Finalising at spine

At the spine we need to order the vertices on both sides. The
players are outgoing fronds, outgoing tree edges, cycle edges, and
incoming fronds.
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Other Embeddings

The embedding that we have obtained has curved edges.
Sometimes we need different criteria for embedding, such as:

Edges might be needed to be straight.

Further, vertices might be needed on the grid.

Furthermore, area might be needed to be minimized.

Or we need edges made of orthogonal segments (then
additionally vertices will need to be rectangular regions, for
degree > 4).
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Straight Line embedding

Straight Line Embeddings, what are they?
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Figure: Straight Line Embedding of K4

Question is: Given a planar graph G does straight line embeddings
always exist? How to compute it?

Answer is: Yes! and we give an idea of how next.
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Straight Line embedding

Straight Line Embeddings, what are they?
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Figure: Straight Line Embedding of K4

Question is: Given a planar graph G does straight line embeddings
always exist? How to compute it?

Answer is: Yes! and we give an idea of how next.
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Straight Line embedding: Basic Idea

v v

Stretch

Figure: Straight Line Embedding

First we triangulate the planar graph. Start with an outer edge
then add vertex after vertex.

We choose v such that it is connected to all consecutive nodes on
the chain.

Then we shift the other vertices on the chain either right or left.
How much? Refer [7, 1, 9].
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Other Embeddings

Straight Line Planar Embedding Theorem

Theorem

Any planar graph with n nodes has a straight line embedding into
the 2n− 4 by n− 2 grid such that edges are mapped into
straight-line segments. Also such an embedding can be
constructed in O(n log n) time[7, 1, 9].
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Other Embeddings

Tutte’s Theorem

Theorem (Tutte’s)

If G is a 3-connected planar graph, then G has a convex
embedding in the plane.

This is a stronger result that Kuratowski’s theorem.
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Open Problems

Several research openings still now.

Planar graphs which admit straight-line grid drawings on grids
of linear area.

Planar graphs which admit unit length straight-line edges.

Planar graphs can be generalised to higher dimension where
we have hyper-faces.

If we allow crossings, then sometimes it makes sense to
minimise crossings.

There is a concept of book thickness of graphs. We embed
the graph such that vertices are in spine and edges can be in
the pages. We have to minimise number of pages.
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Summary

In conclusion

We studied the concept of graph planarity.

We gave a short proof of Kuratowski’s theorem.

Next we saw how we can answer queries about planarity of
graph.

We looked into the planar embeddings.

Now we are for the final concluding remarks.
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Also read

You may also read

Harary’s book for basic graph theory[3].

Hopcroft and Tarjan’s paper[5] for linear planarity testing.

Mehlhorn and Mutzel’s paper[8] for linear planar embeddings.

S. Even, A. Lempel, and I. Cederbaum’s work[2] for a simpler
embedding algorithm.

Chapter 4 of Mehlhorn’s book[7] for further details
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