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Motivation Introduction

Introduction to Prune & Search

What is Prune and Search?

Prune and Search is a technique of successively removing a subset of
input without changing the solution (See [1, 9, 4]).
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Motivation Introduction

Prune & Search Technique—0

Example (Prune & Search)

We have a lot of data as input.
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Motivation Introduction

Prune & Search Technique—1

Example (Prune & Search)

We prune a subset at every step.
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Motivation Introduction

Prune & Search Technique—2

Example (Prune & Search)

Till we have only a small set.
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Motivation Introduction

Where and How

We need to know — where and how prune and search technique is
applied?

Where? It is applied wherever the solution space ultimately is
determined by a small set of data. We shall call it significant data.
Rest of data is extra, spurious.

How? Easy! Instead of trying to locate the significant data directly,
we go the other way round. We try to locate the spurious data and
remove it.
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Motivation Introduction

Outline of Algorithm

Input : Set S of n objects
Output : x∗ = F (S)

Find prunable set S ′ ⊂ S such that F (S − S ′) = F (S)

If |S ′| > 0 then remove S ′ from S and recurse

Else find F (S) directly

There might be some modifications to the theme without affecting the
overall computational complexity of the algorithm.
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Motivation Introduction

Outline of Algorithm

Input : Set S of n objects
Output : x∗ ∈ F (S)

Find prunable set S ′, S ′′ ⊂ S such that F ((S − S ′) ∪ S ′′) ⊆ F (S)

If |(S − S ′) ∪ S ′′| < f |S | then remove S ′ from S , add S ′′ to S and
recurse

Else find F (S) directly

Note: f is a fixed fraction less than 1.
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Motivation Median

Example Problem

Linear-time Median (actually k-th largest) Finding Algorithm[2]

Divide n numbers in n/5 5-tuples

Find medians of each of n/5 5-tuples

Find the median of n/5 medians of 5-tuples recursively

Check if the median of medians is k-th largest

If not then drop at least n/4 points (either smaller or larger) and
recurse
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Motivation Median

Pruning in the case of Median

Example (Median)

Xm<Xm >Xm

<

>

<

>

Pruned

We can prune the upper left quadrant if xm is less than the k-th largest
number.
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Motivation Median

Pruning in the case of Median — the Other Case

Example (Median)

Xm<Xm >Xm

<

>

<

>

Pruned

We can prune the lower right quadrant if xm is greater than the k-th
largest number.
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Motivation Median

Time-complexity of Median Algorithm

Why is the algorithm O(n)?

T (n) ≤ T (3n/4) + T (n/5) + O(n)

Solution of above recurrence is T (n) = O(n)
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Motivation Scope

When can Prune & Search be applied

Prune & Search is applied when

(Obviously) If the problem is a search problem.
Usually it means we want to search for a vector x∗.

Final solution must be determined by only a few of the data.
Most of the optimisation problems search for a value that in the final
analysis is determined only by a small subset of constraints.

The solution space must not change after pruning. (Very important!)
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Motivation Scope

LPP in 2-dimensions

Example (LPP)

x*

Optimality Function's Gradient

x1

x2

Final solution is determined only by two constraints.
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Motivation Scope

Case of Minimum Enclosing Circle

If we pose the minimum enclosing circle in E 2 problem as an optimisation
problem then the centre of minimum enclosing circle is determined by only
three circumference points.
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Motivation Scope

Minimum Enclosing Circle in 2-dimensions

Example (Min Enc Circle)

C

Final solution is determined only by three circumference points.
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Motivation Scope

Minimum Enclosing Circle in 2-dimensions - II

Example (Min Enc Circle)

C

or two circumference points!
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Min Encl Circle Problem Definition

Problem Definition

Problem Definition: Given a finite set of points in plane find the minimum
radius circle such that all points lie inside the circle.

Sarvottamananda (RKMVU) Prune & Search Technique 2009 July 15 19 / 72



Min Encl Circle Problem Definition

What is in the name?

Other names of the problem are minimum stabbing disk problem, minimum
enclosing ball or intersection radius problem (See [10, 7, 4, 3, 9, 6].
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Min Encl Circle Problem Definition

Example of Minimum Enclosing Circle

Example (Several Cases of Minimum Enclosing Circles)

C C C

In every case the centre of minimum enclosing circle lies inside the convex
hull of the points on the circumference.

Sarvottamananda (RKMVU) Prune & Search Technique 2009 July 15 21 / 72



Min Encl Circle Problem Definition

Example of Minimum Enclosing Circle

We are usually interested in stabbing circles of convex shapes only.
Anything non-convex gives rise to bad cases and algorithms whose worst
case performance is not linear.
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Min Encl Circle Problem Definition

Min Enc Circle as an Optimisation Problem

Non-linear Programming Problem of three variables

Min r
Subject to (xi − x)2 + (yi − y)2 ≤ r 2

x , y unconstrained

This is an optimisation problem in 3-variables. We can also write it in an
equivalent optimisation problem of 2-variables.
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Min Encl Circle Problem Definition

Min Enc Circle as an Optimisation Problem - II

Non-linear Programming Problem of two variables

Min Maxi

√
(xi − x)2 + (yi − y)2

x , y unconstrained

In effect, minimise the maximum distance to any point from centre.
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Min Encl Circle Problem Definition

Min-Max Optimisation Problem

The minimum enclosing circle computation problem belongs to a class of
problems known as Min-Max optimisation problems.
Interestingly, computation problems of minimum stabbing circle for line
segments or convex polygons are min-max-min optimisation problems.
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Idea Search

Main Idea

The main idea is that we need to localise the region where the most
significant data lies.

The significant data depends on the problem. Sometimes it may be
somewhere near the centre and sometimes it might be near the
periphery.

In computation of centre-point the significant data is near the centre.
In the case of minimum enclosing circle it is the outer data which is
significant (See [5]).
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Idea Localisation

Follow up of Main Idea

Need to localise the most significant data naturally implies a need to
localise the final solution
Note that exact localisation of the solution is not needed, only that
much which allows us to prune.
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Idea Localisation

Localisation of Optimal Point — I

Most of the time we would be searching for an optimal point x∗

In our case it is the centre of minimum enclosing circle

Once it is located, other things such as the radius, points on the
circumference etc. can be determined in O(n) time
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Idea Localisation

Localisation of Optimal Point — II

The class of problems where we can easily apply prune and search is
where the optimality function is convex.

Why? Seems that the requirement is a tall order.

For convex functions, the gradient allows us to localise the optimal
point.

It doesn’t look like but there is a corresponding function even for
median finding problem which is convex.
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Idea Localisation

Localisation

Example (Localisation)

X*

The direction of gradient allows us to locate the region where x∗ lies.
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Idea Localisation

Localisation — Explanation

In minimisation problem we take the opposite direction than the
gradient. We do not directly deal with gradients because our
functions are not continues and differentiable. They are only
peace-wise continuous and differentiable.
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Idea Localisation

Localisation for non-convex optimality criteria

Example (Concave optimality function)

X*

The case of non-convex optimality criteria
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Idea Localisation

Localisation for non-convex optimality criteria —
explanation

The optimality function need not be convex.

Important thing is to determine the location of x∗ with respect to our
query object (line, hyper-plane or whatever) reliably.
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Idea Localisation

Failure of Localisation

Example (Failure)

X*

We fail to properly localise the optimal point x∗.

Sarvottamananda (RKMVU) Prune & Search Technique 2009 July 15 34 / 72



Algorithm Straight Method

Simplest Algorithm for Minimum Enclosing Circle

C C C

Check every nC3 3-combination of points, if the resulting circle contains all
the points.
Leads to nC3 times n= O(n4) algorithm.
Can we do better?
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Algorithm Voronoi Diagram Method

Observations for Not-so-simple Algorithm

Minimum enclosing circle encloses convex hull

The centre of minimum enclosing circle can be found using
farthest-point Voronoi diagram. It is the point where the farthest
distance is minimum

Compute only the farthest-point Voronoi diagram of the points on
convex hull
How does it look like?

Sarvottamananda (RKMVU) Prune & Search Technique 2009 July 15 36 / 72



Algorithm Voronoi Diagram Method

Observations for Not-so-simple Algorithm

Minimum enclosing circle encloses convex hull

The centre of minimum enclosing circle can be found using
farthest-point Voronoi diagram. It is the point where the farthest
distance is minimum

Compute only the farthest-point Voronoi diagram of the points on
convex hull
How does it look like?

Sarvottamananda (RKMVU) Prune & Search Technique 2009 July 15 36 / 72



Algorithm Voronoi Diagram Method

Observations for Not-so-simple Algorithm

Minimum enclosing circle encloses convex hull

The centre of minimum enclosing circle can be found using
farthest-point Voronoi diagram. It is the point where the farthest
distance is minimum

Compute only the farthest-point Voronoi diagram of the points on
convex hull
How does it look like?

Sarvottamananda (RKMVU) Prune & Search Technique 2009 July 15 36 / 72



Algorithm Voronoi Diagram Method

Farthest-point Voronoi Diagram

Example (Voronoi Diagram)

1

2

3

4

5
[2]

[1]

[3]

[4]

[5]

How do we use it?
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Algorithm Voronoi Diagram Method

Farthest-point Voronoi Diagram Usage

Example (Using Voronoi Diagram)

1

2

3

4

5
[2]

[1]

[3]

[4]

[5]

Final Destination

Start Anywhere

Start from a point at ∞ and move towards solution
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Algorithm Voronoi Diagram Method

Complexity of Voronoi Diagram Method

Construction of both farthest-point voronoi diagram and convex hull
takes O(n log n) time (See [4], one among many references).

Shamos and Hore erroneously conjectured that this O(n log n)
algorithm is optimal.
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Algorithm Prune & Search Method

Prune & Search applied to Min Enc Circle Problem

We solve the problem in three stages (See [9, 8])

Pr 1 Given the centre how can we determine the MEC centred on it (x ,
and y given)

Pr 2 (Constrained version) Given a line on which centre of enclosing circle
lies how can we determine the constrained MEC (ax + by + c = 0).

Pr 3 (Unconstrained version) How can we determine the MEC whose
centre is unconstrained (x and y unconstrained).

We also need to know if the resulting enclosing circle is optimal and if not,
where can we localise the optimal point.
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Algorithm Prune & Search Method

Assumptions

Without loss of generalisation (wlog) we assume

(For Problem 1) The constrained centre is at origin

(For Problem 2) The constrainted line of centres is the x-axis

We can suitable translate the coordinate system to achieve our
objective.
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Algorithm Prune & Search Method

Problem 1

Example (Problem 1)

Centre of MEC can lie only here

Easy! Find the maximum distance to points. If more than 1 are there,
then determine if they lie around the origin or in some half space.
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Algorithm Prune & Search Method

Problem 1

Example (Problem 1)

Centre of MEC can lie only here

In case two points are in circumference, then centre of MEC lies in the
shaded region as above.

Sarvottamananda (RKMVU) Prune & Search Technique 2009 July 15 43 / 72



Algorithm Prune & Search Method

How do we use the solution of Problem 1

Exactly, how do we use the solution we presented in our constrained MEC
problem

We use the solution of Problem 1 to locate x∗ on the half line
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Algorithm Prune & Search Method

Problem 2

Example (Problem 2)

Xm

x*

Drop

Retain
Retain

This is the case when x∗ > xm, xm is the median of intersection of
bisectors with x-axis
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Algorithm Prune & Search Method

Problem 2

Example (Problem 2 — Second Case)

Xm

x*

Drop

Retain
Retain

And this is when x∗ < xm
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Algorithm Prune & Search Method

Problem 2 — Algorithm

Algorithm for Constrained MEC

Pair all the point arbitrarily in bn/2c pairs

Find the intersections of perpendicular bisectors with x-axis

Find median xm of the intersections

If xm is not the solution determine the direction of x∗ and prune the
set

Recurse
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Algorithm Prune & Search Method

Example for Constrained Problem

Example (MEC — Step 1)

Input Set
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Algorithm Prune & Search Method

Example for Constrained Problem

Example (MEC — Step 1)

Xm

Arbitrary Pairing
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Algorithm Prune & Search Method

Example for Constrained Problem

Example (MEC — Step 1)

Xm

x*

Enclosing circle centred on median
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Algorithm Prune & Search Method

Example for Constrained Problem

Example (MEC — Step 1)

Xm

x*

Drop

Retain Others

Decide about pruning
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Algorithm Prune & Search Method

Example for Constrained Problem

Example (MEC — Step 2)

New pruned set
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Algorithm Prune & Search Method

Example for Constrained Problem

Example (MEC — Step 2)

Xm

Arbitrary pairing

Sarvottamananda (RKMVU) Prune & Search Technique 2009 July 15 53 / 72



Algorithm Prune & Search Method

Example for Constrained Problem

Example (MEC — Step 2)

Xm

x*

Enclosing circle centred on median
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Algorithm Prune & Search Method

Example for Constrained Problem

Example (MEC — Step 2)

Xm

x*

Drop

Decide about pruning
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Algorithm Prune & Search Method

Example for Constrained Problem

Example (MEC — Step 3)

New pruned set
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Algorithm Prune & Search Method

Example for Constrained Problem

Example (MEC — Step 3)

Xm

Arbitrary pairing
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Algorithm Prune & Search Method

Example for Constrained Problem

Example (MEC — Step 3)

x*

Xm

Enclosing circle which is otimal
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Algorithm Prune & Search Method

Example for Constrained Problem

Example (MEC — Step 3)

x*

Minimum Enclosing Circle

Minimum Enclosing Circle with original set
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Algorithm Prune & Search Method

Complexity of Algorithm for Problem 2

O(n) time because we are able to drop at least n/4 points in any case and
pruning step is O(n) time
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Algorithm Prune & Search Method

How do we use the solution of Problem 2

Exactly, how do we use the solution we presented in our unconstrained
MEC problem

We use the solution of Problem 2 to locate x∗ on some quadrant!!
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Algorithm Prune & Search Method

Problem 3

Example (Problem 3)

x = xm

y - ym = sm (x - xm)

Retain

Retain

Retain

Drop Retain

x*

x∗ is in lower-left quadrant
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Algorithm Prune & Search Method

Problem 3

Algorithm for Unconstrained MEC

Pair all the point arbitrarily in bn/2c pairs

Find median slopes sm of perpendicular bisectors

Pair bisectors one with < sm slope and another with > sm slope,
compute intersections

Find median xm of intersections and solve constrained MEC for line
x = xm

Wlog let x∗ lie on the left

Drop projections parallel to slope sm of intersections on the right on
the line x = xm, computer median ym

Solve constrained MEC for line y − ym = sm(x − xm)

Wlog, let x∗ lie on lower left quadrant, prune points on upper right
quadrant

Recurse

Sarvottamananda (RKMVU) Prune & Search Technique 2009 July 15 63 / 72



Algorithm Prune & Search Method

Complexity of Algotithm for Problem 3

O(n) time because we are able to drop at least n/16 points in any case
and pruning step is O(n) time
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Extensions

Extensions of Minimum Enclosing Circle

Minimum enclosing circle problem is well studied in plane. It can be
solved optimally for almost every possible kind of convexity satisfying
object (See [4, 6]).

Nevertheless, intersection radius is not trivial everywhere.
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Extensions of Minimum Enclosing Circle

Minimum enclosing circle problem is well studied in plane. It can be
solved optimally for almost every possible kind of convexity satisfying
object (See [4, 6]).

Nevertheless, intersection radius is not trivial everywhere.
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Extensions

Intersection Radius for Line Segments

Example (Bisector of two Line segments)

PerpBisector

PerpBisector

Parabola

AngBisector

Parabola

line segment 1

line segment 2

Bisector of line segments is a complex object, not at all convex.
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Extensions

Some Open Problems

Finding intersection radius of lines in E 3 optimally (linear?)

Finding intersection radius of convex polyhedra optimally (linear?)

Finding minimum volume ellipsoids enclosing or stabbing different
classes of objects. The case of points and hyper-planes is solved.
(linear?)

Finding 2, 3 or k enclosing/stabbing circles such that maximum radius
of these circles is minimum (or their sum is minimum). (o(nk)-time?)

Sarvottamananda (RKMVU) Prune & Search Technique 2009 July 15 67 / 72



Summary

Summary

We explored the notion of prune and search

Next, we computer minimum enclosing circle using prune and search
technique

Lastly, we sketched how prune and search can be extended
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Summary
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Summary

At Last . . .

Thank You

shreesh@rkmvu.ac.in
sarvottamananda@gmail.com
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