
Geometric Data Structures

Geometric Data Structures

Swami Sarvottamananda

Ramakrishna Mission Vivekananda University

Coimbatore-IGGA, 2010

Geometric Data Structures

Outline I

1 Introduction
Scope of the Lecture
Motivation for Geometric Data Structures

2 Range searching
Range searching: Motivation
Range Trees
Kd-trees

3 Interval Queries
Interval Queries: Motivation
Interval Trees
Segment Trees

4 Sweeping Technique
Linear Sweep
Angular Sweep
Applications for Geometric Data Structures

Geometric Data Structures

Outline II

5 Conclusion

Geometric Data Structures

Introduction

Introduction

Geometric Data Structures

Introduction

Scope

Scope of the lecture

Range queries: We consider 1-d and 2-d range queries for
point sets.

Range trees and Kd-trees: Improved 2-d orthogonal range
searching with range trees and kd-trees.

Interval trees: Interval trees and segment trees for reporting all
intervals on a line containing a given query point on the line.

Paradigm of Sweep algorithms: For reporting intersections of
line segments, and for computing visible regions.

Geometric Data Structures

Introduction

Scope

Scope of the lecture

Range queries: We consider 1-d and 2-d range queries for
point sets.

Range trees and Kd-trees: Improved 2-d orthogonal range
searching with range trees and kd-trees.

Interval trees: Interval trees and segment trees for reporting all
intervals on a line containing a given query point on the line.

Paradigm of Sweep algorithms: For reporting intersections of
line segments, and for computing visible regions.

Geometric Data Structures

Introduction

Scope

Scope of the lecture

Range queries: We consider 1-d and 2-d range queries for
point sets.

Range trees and Kd-trees: Improved 2-d orthogonal range
searching with range trees and kd-trees.

Interval trees: Interval trees and segment trees for reporting all
intervals on a line containing a given query point on the line.

Paradigm of Sweep algorithms: For reporting intersections of
line segments, and for computing visible regions.

Geometric Data Structures

Introduction

Scope

Scope of the lecture

Range queries: We consider 1-d and 2-d range queries for
point sets.

Range trees and Kd-trees: Improved 2-d orthogonal range
searching with range trees and kd-trees.

Interval trees: Interval trees and segment trees for reporting all
intervals on a line containing a given query point on the line.

Paradigm of Sweep algorithms: For reporting intersections of
line segments, and for computing visible regions.

Geometric Data Structures

Introduction

Scope

Not in the Scope yet relevant

Point location Problem: The elegant algorithm makes use of
traditional data structures such as height balanced trees which
are augmented and modified to suite the purpose.

BSP trees: Trees are usually normal binary trees again (not
even height balanced), so we skip it, even though it is quite
interesting and needs a lecture by itself to properly treat the
subject.

Geometric Data Structures

Introduction

Scope

Not in the Scope yet relevant

Point location Problem: The elegant algorithm makes use of
traditional data structures such as height balanced trees which
are augmented and modified to suite the purpose.

BSP trees: Trees are usually normal binary trees again (not
even height balanced), so we skip it, even though it is quite
interesting and needs a lecture by itself to properly treat the
subject.

Geometric Data Structures

Introduction

Motivation for Geometric Data Structures

Motivation

Geometric Data Structures

Introduction

Motivation for Geometric Data Structures

Point Inclusion in Convex Polygons

q

We know a linear time algorithm to determine whether a point is
inside a simple polygon.
Can we do it efficiently if polygon is known to be convex? Perhaps
in sub-linear time.

Geometric Data Structures

Introduction

Motivation for Geometric Data Structures

Point Inclusion in Convex Polygons — Pre-processing

q

Sub-linear algorithm Impossible (!!) without storing the points in a
suitable data structure beforehand.
This is called pre-processing of data.

Geometric Data Structures

Introduction

Motivation for Geometric Data Structures

Preprocessing of data

The idea is we pre-process only once for potentially many queries,
such that overall efficiency is increased.
The pre-processing step might be costly.

Example

Preprocessing in O(n log n) acceptable if we can do O(n) queries
(or more) in O(log n) time.

Actually, the break away point is O(log n) queries if the naive
algorithm is linear.

Geometric Data Structures

Introduction

Motivation for Geometric Data Structures

Point Inclusion in Convex Polygons — Binary Search

q

We divide the convex polygon in chain of cones and do a binary
search.

Geometric Data Structures

Introduction

Motivation for Geometric Data Structures

Point Inclusion in Convex Polygons — Binary Search

q

r = root

left(r)

right(r)

Number of searches = 3.

Geometric Data Structures

Introduction

Motivation for Geometric Data Structures

Point Inclusion in Star-shaped Polygons

q

Same algorithm also works for star shaped polygons. Convex
polygons are special cases of star-shaped polygons.

Geometric Data Structures

Range searching

Range Searching

Geometric Data Structures

Range searching

Range searching: Motivation

Example of Range Searching

Problem

Given a fixed sequence of numbers x1, x2, . . . , xn report all
numbers x such that a ≤ x < b for finitely many varying a’s and
b’s.

I.e. Given, say, 1, 2, 4, 6, 8, 10, we are asked to output numbers
between 3 and 7.
In the next slide puts the points on a real line.

Geometric Data Structures

Range searching

Range searching: Motivation

1-dimensional Range searching

a b

Problem

Given a set P of n points {p1, p2, · · · , pn} on the real line, report
points of P that lie in the range [a, b], a ≤ b.

How do we do it?

Geometric Data Structures

Range searching

Range searching: Motivation

1-dimensional Range searching

a b

Using binary search on an array, we can answer such a query
in O(log n+ k) time where k is the number of points of P in
[a, b].

However, when we permit insertion or deletion of points, we
cannot use an array data structure so efficiently.

We therefore use AVL-trees, B∗-trees, Red-black trees, etc.

How? By putting all the data on the leaves and linking them
by a linked list.

Geometric Data Structures

Range searching

Range searching: Motivation

1-dimensional Range searching

a b

Using binary search on an array, we can answer such a query
in O(log n+ k) time where k is the number of points of P in
[a, b].

However, when we permit insertion or deletion of points, we
cannot use an array data structure so efficiently.

We therefore use AVL-trees, B∗-trees, Red-black trees, etc.

How? By putting all the data on the leaves and linking them
by a linked list.

Geometric Data Structures

Range searching

Range searching: Motivation

1-dimensional Range searching

a b

Using binary search on an array, we can answer such a query
in O(log n+ k) time where k is the number of points of P in
[a, b].

However, when we permit insertion or deletion of points, we
cannot use an array data structure so efficiently.

We therefore use AVL-trees, B∗-trees, Red-black trees, etc.

How? By putting all the data on the leaves and linking them
by a linked list.

Geometric Data Structures

Range searching

Range searching: Motivation

1-dimensional Range searching

a b

Using binary search on an array, we can answer such a query
in O(log n+ k) time where k is the number of points of P in
[a, b].

However, when we permit insertion or deletion of points, we
cannot use an array data structure so efficiently.

We therefore use AVL-trees, B∗-trees, Red-black trees, etc.

How? By putting all the data on the leaves and linking them
by a linked list.

Geometric Data Structures

Range searching

Range searching: Motivation

1-dimensional Range searching

2 4 7 13 20 22 26 35

2

20

35
4

2 7

4

26

13

22

Search range [6,25]

7 13 20 22

Report 7,13,20,22

26

We use a binary leaf search tree where leaf nodes store the
points on the line, sorted by x-coordinates.

Each internal node stores the x-coordinate of the rightmost
point in its left subtree for guiding search.

Geometric Data Structures

Range searching

Range searching: Motivation

1-dimensional Range searching

2 4 7 13 20 22 26 35

2

20

35
4

2 7

4

26

13

22

Search range [6,25]

7 13 20 22

Report 7,13,20,22

26

We use a binary leaf search tree where leaf nodes store the
points on the line, sorted by x-coordinates.

Each internal node stores the x-coordinate of the rightmost
point in its left subtree for guiding search.

Geometric Data Structures

Range searching

Range searching: Motivation

Notion of Output-sensitive Algorithm

Note the k in the query time i.e. O(k + log n). The time to
report the points depends on the number of output points, k.

Can be potentially very large, O(n), or very small, O(1), i.e.
zero points.

We would always like such a proportional kind of Output
sensitive algorithm.

Geometric Data Structures

Range searching

Range searching: Motivation

Problem of Rangesearching

Our featured problem: Report points inside a rectangle.

For obvious reasons, this problem is known as 2D/3D range
searching.

Geometric Data Structures

Range searching

Range searching: Motivation

2-dimensional Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

Problem

Given a set P of n points in the plane, report points inside a query
rectangle Q whose sides are parallel to the axes.

Here, the points inside Q are 14, 12 and 17.
How do we find these?

Geometric Data Structures

Range searching

Range searching: Motivation

2-dimensional Range Searching: Simple method

Naive Method

Check for each point!! If inside the rectangle, output it.

Neither efficient for multiple searches,

nor is output sensitive.

Geometric Data Structures

Range searching

Range searching: Motivation

2-dimensional Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

How can we do it efficiently in sub-linear time with an
output-sensitive algorithm?

Geometric Data Structures

Range searching

Range searching: Motivation

2-dimensional Range Searching - using 1-dimensional
Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

Using two 1-d range queries, one along each axis, solves the
2-d range query. Output intersection of sets.

The cost incurred may exceed the actual output size of the
2-d range query (worst case is O(n), n = |P |).

Geometric Data Structures

Range searching

Range searching: Motivation

2-dimensional Range Searching - using 1-dimensional
Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

Using two 1-d range queries, one along each axis, solves the
2-d range query. Output intersection of sets.

The cost incurred may exceed the actual output size of the
2-d range query (worst case is O(n), n = |P |).

Geometric Data Structures

Range searching

Range searching: Motivation

2-dimensional Range Searching — disadvantages in
using 1-dimensional Range Searching

Empty

Algorithm is sub-linear but not output-sensitive.

We are checking points which are not in the desired output.
This was not the case in 1-d range searching.

Geometric Data Structures

Range searching

Range searching: Motivation

2D Range Searching: Using Range trees and Kd-trees

Can we do better?

Yes! We can do better using Kd-tree (from worst-case O(n)
to worst-case O(

√
n+ k)).

Yes!! At the cost of further pre-processing time and space we
can do still better using range trees (O(log2 n+ k)).

First we take up range-trees (somewhat easier to understand).

Geometric Data Structures

Range searching

Range Trees

Range Trees

Geometric Data Structures

Range searching

Range Trees

Range trees: Idea

x-range tree

y-range tree

xlo xhi

ylo

yhi

Geometric Data Structures

Range searching

Range Trees

Range trees: Concepts

a b

Given a 2-d rectangle query [a, b]× [c, d], we can identify subtrees
whose leaf nodes are in the range [a, b] along the x-direction.

Only a subset of these leaf nodes lie in the range [c, d] along the
y-direction.

Geometric Data Structures

Range searching

Range Trees

Range trees: Storage Requirement?

assoc(v)

v

T

T

p

p

p

p

T

Tassoc(v) is a binary search tree on y-coordinates for points in the
leaf nodes of the subtree tooted at v in the tree T .

The point p is duplicated in Tassoc(v) for each v on the search path
for p in tree T .

The total space requirements is therefore O(n log n).

Geometric Data Structures

Range searching

Range Trees

Range trees: Method

a b

We perform 1-d range queries with the y-range [c, d] in each of the
subtrees adjacent to the left and right search paths for the x-range
[a, b] in the tree T .

Geometric Data Structures

Range searching

Range Trees

Complexity of range searching using range trees

Since the search path is O(log n) in size, and each y-range query
requires O(log n) time, the total cost of searching is O(log2 n).
The reporting cost is O(k) where k points lie in the query
rectangle.

Geometric Data Structures

Range searching

Range Trees

Range searching with Range-trees

Given a set S of n points in the plane, we can construct a
range tree in O(n log n) time and space, so that rectangle
queries can be executed in O(log2 n+ k) time.

The query time can be improved to O(log n+ k) using the
technique of fractional cascading. We won’t discuss this,
some deep constructions are involved.

For Audience: How can you construct range tree in O(n log n)
time. O(n log2 n) is easy.

Geometric Data Structures

Range searching

Range Trees

Range searching with Range-trees

Given a set S of n points in the plane, we can construct a
range tree in O(n log n) time and space, so that rectangle
queries can be executed in O(log2 n+ k) time.

The query time can be improved to O(log n+ k) using the
technique of fractional cascading. We won’t discuss this,
some deep constructions are involved.

For Audience: How can you construct range tree in O(n log n)
time. O(n log2 n) is easy.

Geometric Data Structures

Range searching

Range Trees

Range searching with Range-trees

Given a set S of n points in the plane, we can construct a
range tree in O(n log n) time and space, so that rectangle
queries can be executed in O(log2 n+ k) time.

The query time can be improved to O(log n+ k) using the
technique of fractional cascading. We won’t discuss this,
some deep constructions are involved.

For Audience: How can you construct range tree in O(n log n)
time. O(n log2 n) is easy.

Geometric Data Structures

Range searching

Kd-trees

Kd Trees

Geometric Data Structures

Range searching

Kd-trees

Kd-trees for Range Searching Problem

There is another beast called Kd-trees.
We use a data structure called Kd-tree to solve the problem
some-what efficiently in efficient space.
What are Kd-trees?

Geometric Data Structures

Range searching

Kd-trees

2-dimensional Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

Problem (Review: What are we doing?)

Given a set P of n points in the plane, report points inside a query
rectangle Q whose sides are parallel to the axes.

Here, the points inside Q are 14, 12 and 17.

Geometric Data Structures

Range searching

Kd-trees

Kd-trees

1

2

3
4

5

6

7

8

9

10

11

12

13
15

16

17

14

L R

RU

RD

LU

LD 8

LU LD RU RD

RL

S

2 14 6
11

4

16

1 2 3 16
15 14 13 12 5 6 7 8 17 10 11 9

4

For the given point set, this is how the tree looks like.

Geometric Data Structures

Range searching

Kd-trees

Kd-trees for Range Searching Problem

What are Kd-trees?

Kd-trees are basically binary trees where we divide data first
on x-coordinates, then y-coordinates, then z-coordinates, etc.
and then cycle.

In 2D case, alternate levels of Kd-tree are sorted along x-axis
and y-axis.

Geometric Data Structures

Range searching

Kd-trees

Kd-trees: Some concepts

1

2

3
4

5

6

7

8

9

10

11

12

13
15

16

17

14

L R

RU

RD

LU

LD 8

LU LD RU RD

RL

S

2 14 6
11

4

16

1 2 3 16
15 14 13 12 5 6 7 8 17 10 11 9

4

The tree T is a perfectly height-balanced binary search tree
with alternate layers of nodes spitting subsets of points in P
using x- and y- coordinates, respectively as follows.

The point r stored in the root vertex T splits the set S into
two roughly equal sized sets L and R using the median
x-coordinate xmedian(S) of points in S, so that all points in
L (R) have coordinates less than or equal to (strictly greater
than) xmedian(S).

The entire plane is called the region(r). Better to keep the
extents of region(r) as well with r.

Geometric Data Structures

Range searching

Kd-trees

Kd-trees: Some concepts

1

2

3
4

5

6

7

8

9

10

11

12

13
15

16

17

14

L R

RU

RD

LU

LD 8

LU LD RU RD

RL

S

2 14 6
11

4

16

1 2 3 16
15 14 13 12 5 6 7 8 17 10 11 9

4

The tree T is a perfectly height-balanced binary search tree
with alternate layers of nodes spitting subsets of points in P
using x- and y- coordinates, respectively as follows.

The point r stored in the root vertex T splits the set S into
two roughly equal sized sets L and R using the median
x-coordinate xmedian(S) of points in S, so that all points in
L (R) have coordinates less than or equal to (strictly greater
than) xmedian(S).

The entire plane is called the region(r). Better to keep the
extents of region(r) as well with r.

Geometric Data Structures

Range searching

Kd-trees

Kd-trees: Some concepts

1

2

3
4

5

6

7

8

9

10

11

12

13
15

16

17

14

L R

RU

RD

LU

LD 8

LU LD RU RD

RL

S

2 14 6
11

4

16

1 2 3 16
15 14 13 12 5 6 7 8 17 10 11 9

4

The tree T is a perfectly height-balanced binary search tree
with alternate layers of nodes spitting subsets of points in P
using x- and y- coordinates, respectively as follows.

The point r stored in the root vertex T splits the set S into
two roughly equal sized sets L and R using the median
x-coordinate xmedian(S) of points in S, so that all points in
L (R) have coordinates less than or equal to (strictly greater
than) xmedian(S).

The entire plane is called the region(r). Better to keep the
extents of region(r) as well with r.

Geometric Data Structures

Range searching

Kd-trees

Kd-trees: Some Concepts

24

16

17

L R

RU

RD

LU

LD

10

18

19

20

21

22

23

25

26

28

27

29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4

6

5

1

15

14

13

12

11

2

u

v

The set L (R) is split into two roughly equal sized subsets LU
and LD (RU and RD), using point u (v) that has the median
y-coordinate in the set L (R), and including u in LU (RU).

The entire halfplane containing set L (R) is called the
region(u) (region(v)).

Geometric Data Structures

Range searching

Kd-trees

Kd-trees: Some Concepts

24

16

17

L R

RU

RD

LU

LD

10

18

19

20

21

22

23

25

26

28

27

29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4

6

5

1

15

14

13

12

11

2

u

v

The set L (R) is split into two roughly equal sized subsets LU
and LD (RU and RD), using point u (v) that has the median
y-coordinate in the set L (R), and including u in LU (RU).

The entire halfplane containing set L (R) is called the
region(u) (region(v)).

Geometric Data Structures

Range searching

Kd-trees

Answering rectangle queries using Kd-trees

24

16

17

L R

RU

RD

LU

LD

10

18

19

20

21

22

23

25

26

28

27

29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4

6

5

1

15

14

13

12

11

2

u

v

A query rectangle Q may partially overlap a region, say
region(p), completely contain it, or completely avoids it.

If Q contains an entire bounded region(p) then report all
points in region(p).

If Q partially intersects region(p) then descend into the
children.

Otherwise skip region(p).

Geometric Data Structures

Range searching

Kd-trees

Answering rectangle queries using Kd-trees

24

16

17

L R

RU

RD

LU

LD

10

18

19

20

21

22

23

25

26

28

27

29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4

6

5

1

15

14

13

12

11

2

u

v

A query rectangle Q may partially overlap a region, say
region(p), completely contain it, or completely avoids it.

If Q contains an entire bounded region(p) then report all
points in region(p).

If Q partially intersects region(p) then descend into the
children.

Otherwise skip region(p).

Geometric Data Structures

Range searching

Kd-trees

Time complexity of rectangle queries

1

3
4

5

6

7

8

9
11

12

13
15

16

17

14

L R

RU

RD

LU

LD

10

2

8

LU LD RU RD

RL

S

2 14 6

4

16

1 2 3 16
15 14 13 12 5 6 7 8 17 10 11 9

4

10

The nodes of the Kd-tree we visit are (1) the internal nodes
representing regions partially intersecting Q and (2) all the
descendant nodes for regions fully inside Q.

Geometric Data Structures

Range searching

Kd-trees

Time complexity of output points reporting

Reporting points within Q contributes to the output size k for
the query.

No leaf level region in T has more than 2 points.

So, the cost of inspecting points outside Q but within the
intersection of leaf level regions of T can be charged to the
internal nodes traversed in T , i.e. it will not be more.

This cost is borne for all leaf level regions intersected by Q.
This also takes care of fully contained regions.

Geometric Data Structures

Range searching

Kd-trees

Time complexity of output points reporting

Reporting points within Q contributes to the output size k for
the query.

No leaf level region in T has more than 2 points.

So, the cost of inspecting points outside Q but within the
intersection of leaf level regions of T can be charged to the
internal nodes traversed in T , i.e. it will not be more.

This cost is borne for all leaf level regions intersected by Q.
This also takes care of fully contained regions.

Geometric Data Structures

Range searching

Kd-trees

Time complexity of output points reporting

Reporting points within Q contributes to the output size k for
the query.

No leaf level region in T has more than 2 points.

So, the cost of inspecting points outside Q but within the
intersection of leaf level regions of T can be charged to the
internal nodes traversed in T , i.e. it will not be more.

This cost is borne for all leaf level regions intersected by Q.
This also takes care of fully contained regions.

Geometric Data Structures

Range searching

Kd-trees

Time complexity of output points reporting

Reporting points within Q contributes to the output size k for
the query.

No leaf level region in T has more than 2 points.

So, the cost of inspecting points outside Q but within the
intersection of leaf level regions of T can be charged to the
internal nodes traversed in T , i.e. it will not be more.

This cost is borne for all leaf level regions intersected by Q.
This also takes care of fully contained regions.

Geometric Data Structures

Range searching

Kd-trees

Time complexity of traversing the tree

1

3
4

5

6

7

8

9
11

12

13
15

16

17

14

L R

RU

RD

LU

LD

10

2

8

LU LD RU RD

RL

S

2 14 6
11

4

16

1 2 3 16
15 14 13 12 5 6 7 8 17 10 11 9

4

Now we need to bound the number of internal nodes of T
traversed for a given query Q corresponding to partial intersections.

Geometric Data Structures

Range searching

Kd-trees

Time complexity of traversing the tree

It is sufficient to determine the upper bound on the number of
(internal) nodes whose regions are intersected by a single
vertical (horizontal) line. Why?

Because the internal nodes encountered in case of rectangle
are subset of internal nodes encountered for four straight-line
(two horizontal and two vertical) queries.

Geometric Data Structures

Range searching

Kd-trees

Time complexity of traversing the tree

It is sufficient to determine the upper bound on the number of
(internal) nodes whose regions are intersected by a single
vertical (horizontal) line. Why?

Because the internal nodes encountered in case of rectangle
are subset of internal nodes encountered for four straight-line
(two horizontal and two vertical) queries.

Geometric Data Structures

Range searching

Kd-trees

Time complexity of traversing the tree

1

3
4

5

6

7

8

9
11

12

13
15

16

17

14

L R

RU

RD

LU

LD

10

2

Any vertical line intersecting S can intersect either L or R but
not both, but it can meet both RU and RD (LU and LD).

Any horizontal line intersecting R can intersect either RU or
RD but not both, but it can meet both children of RU (RD).

Geometric Data Structures

Range searching

Kd-trees

Time complexity of traversing the tree

1

3
4

5

6

7

8

9
11

12

13
15

16

17

14

L R

RU

RD

LU

LD

10

2

Any vertical line intersecting S can intersect either L or R but
not both, but it can meet both RU and RD (LU and LD).

Any horizontal line intersecting R can intersect either RU or
RD but not both, but it can meet both children of RU (RD).

Geometric Data Structures

Range searching

Kd-trees

Time complexity of rectangle queries

v

lc(v)

R1 R2

Therefore, the time complexity T (n) for an n-vertex Kd-tree
obeys the recurrence relation

T (n) = 2 + 2T (
n

4
), T (1) = 1

The solution for T (n) is O(
√
n) (an exercise for audience!,

direct substitution does not work!!).

The total cost of reporting k points in Q is therefore
O(
√
n+ k).

Geometric Data Structures

Range searching

Kd-trees

Time complexity of rectangle queries

v

lc(v)

R1 R2

Therefore, the time complexity T (n) for an n-vertex Kd-tree
obeys the recurrence relation

T (n) = 2 + 2T (
n

4
), T (1) = 1

The solution for T (n) is O(
√
n) (an exercise for audience!,

direct substitution does not work!!).

The total cost of reporting k points in Q is therefore
O(
√
n+ k).

Geometric Data Structures

Range searching

Kd-trees

Summary:Range searching with Kd-trees

Given a set S of n points in the plane, we can construct a Kd-tree
in O(n log n) time and O(n) space, so that rectangle queries can
be executed in O(

√
n+ k) time. Here, the number of points in the

query rectangle is k.

Geometric Data Structures

Range searching

Kd-trees

More general queries

General Queries: Points inside triangles, circles, ellipses, etc.

Triangles can simulate other shapes with straight edges.

Circle are different, cannot be simulated by triangles! (or any
other straight edge figure!!).

Geometric Data Structures

Range searching

Kd-trees

More general queries

General Queries: Points inside triangles, circles, ellipses, etc.

Triangles can simulate other shapes with straight edges.

Circle are different, cannot be simulated by triangles! (or any
other straight edge figure!!).

Geometric Data Structures

Range searching

Kd-trees

More general queries

Kd-trees can be used for all of these, rectangle query, circle query
and nearest neighbour!!

Geometric Data Structures

Interval Queries

Interval Queries

Geometric Data Structures

Interval Queries

Interval Queries: Motivation

Motivation: Windowing Problem

Problem

Report all the objects (may be partial) inside a window.

We already dealt with points. Here the objects are line-segments.

Geometric Data Structures

Interval Queries

Interval Queries: Motivation

Motivation: Windowing Problem

Windowing problem is not a special case of rangequery. Even for
orthogonal segments.
Segments with endpoints outside the window can intersect it.

Geometric Data Structures

Interval Queries

Interval Queries: Motivation

Simple Algorithm

Report line segments if both end-points inside the window, i.e.
full line-segments.

Report line segments intersecting the four boundaries, i.e.,
partial line segments.

Geometric Data Structures

Interval Queries

Interval Queries: Motivation

Special Treatment: Windowing Problem

X
X’

X
mid

We solve the special case. We take the window edges as infinite
lines for segments partially inside (we report extra).

Geometric Data Structures

Interval Queries

Interval Queries: Motivation

Problem concerning intervals

Problem

Given a set of intervals I and a query point x, report all intervals
in I intersecting x.

Solution: Obviously O(n), n = |I|, algorithm will work.

Geometric Data Structures

Interval Queries

Interval Queries: Motivation

Finding intervals containing a query point

A

B

C

D

E

F

G

H

xquery

queryx’

y’

y

Simpler queries ask for reporting all intervals intersecting the
vertical line X = xquery.
More difficult queries ask for reporting all intervals intersecting a
vertical segment joining (x′query, y) and (x′query, y

′).

Geometric Data Structures

Interval Queries

Interval Trees

Interval Trees

Geometric Data Structures

Interval Queries

Interval Trees

Interval trees: What are these?

1. F

2. F

1. H

2. H

1. G

2. G1. C−D

2. D−C

1. A−E−B

2. B−E−A

A

B

C

D

E

F

G

H

xmid

M

L R

M

L
R

I

The set M has intervals intersecting the vertical line X = xmid,
where xmid is the median of the x-coordinates of the 2n endpoints.
The root node has intervals M sorted in two independent orders
(i) by right end points (B-E-A), and (ii) left end points (A-E-B).

Geometric Data Structures

Interval Queries

Interval Trees

Interval tree: Computing and Space Requirements

1. F

2. F

1. H

2. H

1. G

2. G1. C−D

2. D−C

1. A−E−B

2. B−E−A

A

B

C

D

E

F

G

H

xmid

M

L R

M

L
R

I

The set L and R have at most n endpoints each.

So they have at most n
2 intervals each.

Clearly, the cost of (recursively) building the interval tree is
O(n log n).

The space required is linear.

Geometric Data Structures

Interval Queries

Interval Trees

Answering queries using an interval tree

xmidxquery queryx’

A

B

C

D

E

F

G

H

List 2List 1

(Only A & E) (Only B)

M

A,E,B B,E,A

R

L

For xquery < xmid, we do not traverse subtree for subset R.

For x′query > xmid, we do not traverse subtree for subset L.

Clearly, the cost of reporting the k intervals is O(log n+ k).

Geometric Data Structures

Interval Queries

Segment Trees

Another solution using segment trees

There is yet another beast called Segment Trees!.
Segment trees can also be used to solve the problem concerning
intervals.

Geometric Data Structures

Interval Queries

Segment Trees

Introducing the segment tree

A

B

C

D

B B C

D
C

CD
A

A

For an interval which spans the entire range inv(v), we mark only
internal node v in the segment tree, and not any descendant of v.

We never mark any ancestor of a marked node with the same label.

Geometric Data Structures

Interval Queries

Segment Trees

Representing intervals in the segment tree

A

B

C

D

B B C

D
C

CD
A

A

E

E
E

At each level, at most two internal nodes are marked for any given
interval.

Along a root to leaf path an interval is stored only once.

The space requirement is therefore O(n log n).

Geometric Data Structures

Interval Queries

Segment Trees

Reporting intervals containing a given query point

A

B

C

D

B B C

D
C

CD
A

A

E

E
E

X1

X2
X3

Search the tree for the given query point.

Report against all intervals that are on the search path to the
leaf.

If k intervals contain the query point then the time complexity
is O(log n+ k).

Geometric Data Structures

Interval Queries

Segment Trees

Reporting intervals containing a given query point

A

B

C

D

B B C

D
C

CD
A

A

E

E
E

X1

X2
X3

Search the tree for the given query point.

Report against all intervals that are on the search path to the
leaf.

If k intervals contain the query point then the time complexity
is O(log n+ k).

Geometric Data Structures

Interval Queries

Segment Trees

Reporting intervals containing a given query point

A

B

C

D

B B C

D
C

CD
A

A

E

E
E

X1

X2
X3

Search the tree for the given query point.

Report against all intervals that are on the search path to the
leaf.

If k intervals contain the query point then the time complexity
is O(log n+ k).

Geometric Data Structures

Sweeping Technique

Linear Sweep

Line Sweep Technique

Geometric Data Structures

Sweeping Technique

Linear Sweep

Problem to Exemplify Line Sweep

A

B

C

D

E

F

G

HI

J

K

L

M

N

1
2

3
4

5

0

Problem

Given a set S of n line segments in the plane, report all
intersections between the segments.

Geometric Data Structures

Sweeping Technique

Linear Sweep

Reporting segments intersections

A

B

C

D

E

F

G

HI

J

K

L

M

N

1
2

3
4

5

0

Easy but not the best solution: Check all pairs in O(n2) time.

Geometric Data Structures

Sweeping Technique

Linear Sweep

Line Sweep: Some observations for Sweeping

A

B

C

D

E

F

G

HI

J

K

L

M

N

1
2

3
4

5

0

A vertical line just before any intersection meets intersecting
segments in an empty, intersection free segment, i.e. they
must be consecutive.

Detect intersections by checking consecutive pairs of segments
along a vertical line.

This way, each intersection point can be detected. How?

We maintain the order at the sweep line, which only changes
at event points.

Geometric Data Structures

Sweeping Technique

Linear Sweep

Line Sweep: Some observations for Sweeping

A

B

C

D

E

F

G

HI

J

K

L

M

N

1
2

3
4

5

0

A vertical line just before any intersection meets intersecting
segments in an empty, intersection free segment, i.e. they
must be consecutive.

Detect intersections by checking consecutive pairs of segments
along a vertical line.

This way, each intersection point can be detected. How?

We maintain the order at the sweep line, which only changes
at event points.

Geometric Data Structures

Sweeping Technique

Linear Sweep

Line Sweep: Some observations for Sweeping

A

B

C

D

E

F

G

HI

J

K

L

M

N

1
2

3
4

5

0

A vertical line just before any intersection meets intersecting
segments in an empty, intersection free segment, i.e. they
must be consecutive.

Detect intersections by checking consecutive pairs of segments
along a vertical line.

This way, each intersection point can be detected. How?

We maintain the order at the sweep line, which only changes
at event points.

Geometric Data Structures

Sweeping Technique

Linear Sweep

Line Sweep: Some observations for Sweeping

A

B

C

D

E

F

G

HI

J

K

L

M

N

1
2

3
4

5

0

A vertical line just before any intersection meets intersecting
segments in an empty, intersection free segment, i.e. they
must be consecutive.

Detect intersections by checking consecutive pairs of segments
along a vertical line.

This way, each intersection point can be detected. How?

We maintain the order at the sweep line, which only changes
at event points.

Geometric Data Structures

Sweeping Technique

Linear Sweep

Sweeping: Steps to be taken at each event

We use heap for event queue.
We use binary search trees (balanced) for segments in the sweep
line.
Source (for image): http://research.engineering.wustl.edu/ pless/

Geometric Data Structures

Sweeping Technique

Linear Sweep

Reporting segments intersections

n/2

n/4

k
n = 2 −1

The use of a heap does nor require apriori sorting.

All we do is a heap building operation in linear time level by
level and bottom-up.

1× n
2 + 2× n

4 + 4× n
8 + ...

Geometric Data Structures

Sweeping Technique

Linear Sweep

Reporting segments intersections

n/2

n/4

k
n = 2 −1

The use of a heap does nor require apriori sorting.

All we do is a heap building operation in linear time level by
level and bottom-up.

1× n
2 + 2× n

4 + 4× n
8 + ...

Geometric Data Structures

Sweeping Technique

Linear Sweep

Reporting segments intersections

n/2

n/4

k
n = 2 −1

The use of a heap does nor require apriori sorting.

All we do is a heap building operation in linear time level by
level and bottom-up.

1× n
2 + 2× n

4 + 4× n
8 + ...

Geometric Data Structures

Sweeping Technique

Linear Sweep

Sweeping steps: Endpoints and intersection points

A

B

C

D

E

F

G

HI

J

K

L

M

N

CD,GH,EF−>CD,EF−>EF,CD

AB−>AB,EF−>CD,AB,EF−>CD,EF−>CD,IJ,EF−>CD,IJ,GH,EF−>CD,GH,IJ,EF

Geometric Data Structures

Sweeping Technique

Angular Sweep

Problem for Visibility: angular sweep

A

B

C
D

E

F

GH

I J

K

L

M

O

P

Q

R

S

Z

12

3

4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z6,NP−−>Z7, NP and LM

Z4,FG and DE−−>Z5,NP and FG−−>

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

The problem is to determine edges visible from an interior point [6].
We can use a similar angular sweep method.

Geometric Data Structures

Sweeping Technique

Angular Sweep

Visibility polygon computation

A

B

C
D

E

F

GH

I J

K

L

M

O

P

Q

R

S

Z

12

3

4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z6,NP−−>Z7, NP and LM

Z4,FG and DE−−>Z5,NP and FG−−>

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

Final computed visibility region.

Geometric Data Structures

Sweeping Technique

Applications

Application-I

Why do we need special data structures for Computational
Geometry?

Because objects are more complex than set of arbitrary
numbers.

And yet, they have geometric structure and properties that
can be exploited.

Geometric Data Structures

Sweeping Technique

Applications

Application-I

Why do we need special data structures for Computational
Geometry?

Because objects are more complex than set of arbitrary
numbers.

And yet, they have geometric structure and properties that
can be exploited.

Geometric Data Structures

Sweeping Technique

Applications

Application-I: Visibility in plane/space

Any first-person-shooter game needs to solve visibility problem of
computational geometry which is mostly done by Binary Space
Partitions (BSP) [4, 5]. (Software: BSPview)

Geometric Data Structures

Sweeping Technique

Applications

Application-I: Visibility in rough terrain

We might not have enclosed space, or even nice simple objects.
(Software: BSPview)

Geometric Data Structures

Sweeping Technique

Applications

Application-I: Visibility in a room

At every step, we need to compute visible walls, doors, ceiling and
floor. (Software: BSPview)

Geometric Data Structures

Sweeping Technique

Applications

Application-I: Calculation of Binary Space Partitions

The data structure that is useful in this situation is known as
Binary Space/Planar Partitions.
Almost every 3D animation with moving camera makes use of it in
rendering the scene.

Geometric Data Structures

Sweeping Technique

Applications

Application-II: Locating given objects is geometric
subdivisions

Another problem, we might need to locate objects (the elephant) in
distinct regions like trees, riverlet, fields, etc. (GPLed game: 0AD)

Geometric Data Structures

Sweeping Technique

Applications

Application-II: Location of objects in subdivision

This problem is known as point location problem in its simplest
special case.

Geometric Data Structures

Sweeping Technique

Applications

Application-III: Finding objects in a window

Yet in another case, we need to find all objects in a given window
that need to be drawn and manipulated. (GPLed game: 0AD)

Geometric Data Structures

Sweeping Technique

Applications

Application-III: Finding intersections of objects

This is classical collision detection. Intersection of parabolic
trajectories with a 3D terrain. (GPLed game: TA-Spring)

Geometric Data Structures

Sweeping Technique

Applications

Application-III: Problem of Collision Detection/Finding
Intersections

This problem is known as collision detection.
In the static case it is just the intersections computation problem.

Geometric Data Structures

Conclusion

Conclusion

Geometric Data Structures

Conclusion

Open Problems and Generalisations

Generalizations of each of the problems in space and higher
dimensions

Counting points/objects inside different type of objects such
as triangles, circles, ellipses, or, tetrahedrons, simplexes,
ellipsoids in higher space and higher dimensions

Good data structures for computing and storing visibility
information in 3D

Geometric Data Structures

Conclusion

Summary

We studied the concept of Kd-trees and Range trees.

Next we saw how we can answer queries about intervals using
interval trees and segment trees.

We looked into line-sweep technique.

Now we are for the final concluding remarks.

Geometric Data Structures

Conclusion

Summary

We studied the concept of Kd-trees and Range trees.

Next we saw how we can answer queries about intervals using
interval trees and segment trees.

We looked into line-sweep technique.

Now we are for the final concluding remarks.

Geometric Data Structures

Conclusion

Summary

We studied the concept of Kd-trees and Range trees.

Next we saw how we can answer queries about intervals using
interval trees and segment trees.

We looked into line-sweep technique.

Now we are for the final concluding remarks.

Geometric Data Structures

Conclusion

Summary

We studied the concept of Kd-trees and Range trees.

Next we saw how we can answer queries about intervals using
interval trees and segment trees.

We looked into line-sweep technique.

Now we are for the final concluding remarks.

Geometric Data Structures

Conclusion

You may read

The classic book by Preparata and Shamos [7], and

The introductory textbook by Marc de Berg et al. [2],

The book on algorithms by Cormen et al. [1] contains some
basic geometric problems and algorithms,

For point location Edelsbrunner [3], though a little hard to
understand, is good,

And lots of lots of web resources.

Geometric Data Structures

Conclusion

Acknowledgments

Thanks to Dr Sudep P Pal, IIT Kharagpur, for providing most of
the material and pictures of the presentation.

Geometric Data Structures

Conclusion

References I

Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and
Charles E. Leiserson.
Introduction to Algorithms.
McGraw-Hill Higher Education, 2001.

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried
Schwarzkopf.
Computational Geometry: Algorithms and Applications.
Springer-Verlag, second edition, 2000.

Herbert Edelsbrunner.
Algorithms in Combinatorial Geometry.
Springer-Verlag, New York, 1987.

Geometric Data Structures

Conclusion

References II

H. Fuchs, Z. M. Kedem, and B. Naylor.
Predetermining visibility priority in 3-D scenes (preliminary
report).
13(3):175–181, August 1979.

H. Fuchs, Z. M. Kedem, and B. F. Naylor.
On visible surface generation by a priori tree structures.
14(3):124–133, July 1980.

Subir K Ghosh.
Visibility Algorithms in the Plane.
Cambridge University Press, Cambridge, UK, 2007.

F. P. Preparata and M. I. Shamos.
Computational Geometry: An Introduction.
Springer-Verlag, 1985.

Geometric Data Structures

Conclusion

At Last . . .

Thank You

shreesh@rkmvu.ac.in

sarvottamananda@gmail.com

	Introduction
	Scope of the Lecture
	Motivation for Geometric Data Structures

	Range searching
	Range searching: Motivation
	Range Trees
	Kd-trees

	Interval Queries
	Interval Queries: Motivation
	Interval Trees
	Segment Trees

	Sweeping Technique
	Linear Sweep
	Angular Sweep
	Applications for Geometric Data Structures

	Conclusion

