Swami Sarvottamananda

Ramakrishna Mission Vivekananda University

Coimbatore-IGGA, 2010

イロト イヨト イヨト イヨト

Outline I

Introduction

- Scope of the Lecture
- Motivation for Geometric Data Structures
- 2 Range searching
 - Range searching: Motivation
 - Range Trees
 - Kd-trees
- Interval Queries
 - Interval Queries: Motivation
 - Interval Trees
 - Segment Trees

4 Sweeping Technique

- Linear Sweep
- Angular Sweep
- Applications for Geometric Data Structures

(日) (日) (日)

Outline II

5 Conclusion

Introduction

Scope of the lecture

• *Range queries:* We consider 1-d and 2-d range queries for point sets.

イロト イロト イモト イモト

Scope of the lecture

- *Range queries:* We consider 1-d and 2-d range queries for point sets.
- *Range trees and Kd-trees:* Improved 2-d orthogonal range searching with range trees and kd-trees.

Scope of the lecture

- *Range queries:* We consider 1-d and 2-d range queries for point sets.
- *Range trees and Kd-trees:* Improved 2-d orthogonal range searching with range trees and kd-trees.
- *Interval trees:* Interval trees and segment trees for reporting all intervals on a line containing a given query point on the line.

Scope of the lecture

- *Range queries:* We consider 1-d and 2-d range queries for point sets.
- *Range trees and Kd-trees:* Improved 2-d orthogonal range searching with range trees and kd-trees.
- *Interval trees:* Interval trees and segment trees for reporting all intervals on a line containing a given query point on the line.
- *Paradigm of Sweep algorithms:* For reporting intersections of line segments, and for computing visible regions.

A D > A P > A B > A B >

Not in the Scope yet relevant

• *Point location Problem:* The elegant algorithm makes use of traditional data structures such as height balanced trees which are augmented and modified to suite the purpose.

Not in the Scope yet relevant

- *Point location Problem:* The elegant algorithm makes use of traditional data structures such as height balanced trees which are augmented and modified to suite the purpose.
- *BSP trees:* Trees are usually normal binary trees again (not even height balanced), so we skip it, even though it is quite interesting and needs a lecture by itself to properly treat the subject.

イロト イロト イヨト イヨト

Geometric Data Structures	
Introduction	
Motivation for Geometric Data Structures	

Motivation

Introduction

Motivation for Geometric Data Structures

Point Inclusion in Convex Polygons

We know a linear time algorithm to determine whether a point is inside a simple polygon.

Can we do it efficiently if polygon is known to be convex? Perhaps in *sub-linear* time.

イロト イポト イヨト イヨト

Introduction

Motivation for Geometric Data Structures

Point Inclusion in Convex Polygons — Pre-processing

Sub-linear algorithm Impossible (!!) without storing the points in a suitable data structure beforehand. This is called *pre-processing* of data.

Geometric Data Structures Introduction Motivation for Geometric Data Structures

Preprocessing of data

The idea is we pre-process only once for potentially many queries, such that overall efficiency is increased.

The pre-processing step might be costly.

Example

Preprocessing in $O(n\log n)$ acceptable if we can do O(n) queries (or more) in $O(\log n)$ time.

Actually, the break away point is $O(\log n)$ queries if the naive algorithm is linear.

A D > A P > A B > A B >

Introduction

Motivation for Geometric Data Structures

Point Inclusion in Convex Polygons — Binary Search

We divide the convex polygon in chain of cones and do a binary search.

Introduction

Motivation for Geometric Data Structures

Point Inclusion in Convex Polygons — Binary Search

Number of searches = 3.

Introduction

Motivation for Geometric Data Structures

Point Inclusion in Star-shaped Polygons

Same algorithm also works for star shaped polygons. Convex polygons are special cases of star-shaped polygons.

<ロト <回 > < 三 > < 三 > < 三 >

Range Searching

æ

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

Example of Range Searching

Problem

Given a fixed sequence of numbers x_1, x_2, \ldots, x_n report all numbers x such that $a \le x < b$ for finitely many varying a's and b's.

I.e. Given, say, 1, 2, 4, 6, 8, 10, we are asked to output numbers between 3 and 7.

In the next slide puts the points on a real line.

Range searching

Range searching: Motivation

1-dimensional Range searching

Problem

Given a set P of n points $\{p_1, p_2, \dots, p_n\}$ on the real line, report points of P that lie in the range [a, b], $a \leq b$.

How do we do it?

1-dimensional Range searching

• Using binary search on an array, we can answer such a query in $O(\log n + k)$ time where k is the number of points of P in [a, b].

1-dimensional Range searching

- Using binary search on an array, we can answer such a query in $O(\log n + k)$ time where k is the number of points of P in [a, b].
- However, when we permit insertion or deletion of points, we cannot use an array data structure so efficiently.

1-dimensional Range searching

- Using binary search on an array, we can answer such a query in $O(\log n + k)$ time where k is the number of points of P in [a, b].
- However, when we permit insertion or deletion of points, we cannot use an array data structure so efficiently.
- We therefore use AVL-trees, B^* -trees, Red-black trees, etc.

イロト イポト イヨト イヨト

1-dimensional Range searching

- Using binary search on an array, we can answer such a query in O(log n + k) time where k is the number of points of P in [a, b].
- However, when we permit insertion or deletion of points, we cannot use an array data structure so efficiently.
- We therefore use AVL-trees, B^* -trees, Red-black trees, etc.
- How? By putting all the data on the leaves and linking them by a linked list.

Geometric Data Structures Range searching

Range searching: Motivation

1-dimensional Range searching

• We use a *binary leaf search tree* where leaf nodes store the points on the line, sorted by *x*-coordinates.

イロト イポト イヨト イヨト

Geometric Data Structures Range searching

Range searching: Motivation

1-dimensional Range searching

- We use a *binary leaf search tree* where leaf nodes store the points on the line, sorted by *x*-coordinates.
- Each internal node stores the *x*-coordinate of the rightmost point in its left subtree for guiding search.

Notion of Output-sensitive Algorithm

- Note the k in the query time i.e. $O(k + \log n)$. The time to report the points depends on the number of output points, k.
- Can be potentially very large, O(n), or very small, O(1), i.e. zero points.
- We would always like such a proportional kind of *Output sensitive* algorithm.

ヘロト ヘロト ヘビト ヘビト

Problem of Rangesearching

Our featured problem: Report points inside a rectangle.

For obvious reasons, this problem is known as 2D/3D range searching.

Range searching

Range searching: Motivation

2-dimensional Range Searching

Problem

Given a set P of n points in the plane, report points inside a query rectangle Q whose sides are parallel to the axes.

Here, the points inside Q are 14, 12 and 17. How do we find these?

2-dimensional Range Searching: Simple method

Naive Method

- Check for each point!! If inside the rectangle, output it.
- Neither efficient for multiple searches,
- nor is output sensitive.

Range searching

Range searching: Motivation

2-dimensional Range Searching

How can we do it efficiently in sub-linear time with an output-sensitive algorithm?

ヘロト ヘロト ヘビト ヘビト

Range searching

Range searching: Motivation

2-dimensional Range Searching - using 1-dimensional Range Searching

• Using two 1-d range queries, one along each axis, solves the 2-d range query. Output intersection of sets.

イロト イポト イヨト イヨト

Range searching

Range searching: Motivation

2-dimensional Range Searching - using 1-dimensional Range Searching

- Using two 1-d range queries, one along each axis, solves the 2-d range query. Output intersection of sets.
- The cost incurred may exceed the actual output size of the 2-d range query (worst case is O(n), n = |P|).

Range searching

Range searching: Motivation

2-dimensional Range Searching — disadvantages in using 1-dimensional Range Searching

- Algorithm is sub-linear but not output-sensitive.
- We are checking points which are not in the desired output. This was not the case in 1-d range searching.

イロト イポト イヨト イヨト

2D Range Searching: Using Range trees and Kd-trees

- Can we do better?
- Yes! We can do better using Kd-tree (from worst-case O(n) to worst-case $O(\sqrt{n} + k)$).
- Yes!! At the cost of further pre-processing time and space we can do still better using range trees ($O(\log^2 n + k)$).

First we take up range-trees (somewhat easier to understand).

A D > A P > A B > A B >

Geometric Data Structures		
Range searching		
Range Trees		

Range Trees

Range searching

Range Trees

Range trees: Idea

Range searching

Range Trees

Range trees: Concepts

Given a 2-d rectangle query $[a,b] \times [c,d]$, we can identify subtrees whose leaf nodes are in the range [a,b] along the x-direction.

Only a subset of these leaf nodes lie in the range [c, d] along the y-direction.

Range searching

Range Trees

Range trees: Storage Requirement?

 $T_{assoc(v)}$ is a binary search tree on *y*-coordinates for points in the leaf nodes of the subtree tooted at v in the tree T.

The point p is duplicated in $T_{assoc(v)}$ for each v on the search path for p in tree T.

The total space requirements is therefore $O(n \log n)$.

Range searching

Range Trees

Range trees: Method

We perform 1-d range queries with the y-range [c,d] in each of the subtrees adjacent to the left and right search paths for the x-range [a,b] in the tree T.

Range Trees

Complexity of range searching using range trees

Since the search path is $O(\log n)$ in size, and each *y*-range query requires $O(\log n)$ time, the total cost of searching is $O(\log^2 n)$. The reporting cost is O(k) where k points lie in the query rectangle.

Geometric Data Structures Range searching Range Trees

Range searching with Range-trees

• Given a set S of n points in the plane, we can construct a range tree in $O(n \log n)$ time and space, so that rectangle queries can be executed in $O(\log^2 n + k)$ time.

A D > A P > A B > A B >

Geometric Data Structures Range searching Range Trees

Range searching with Range-trees

- Given a set S of n points in the plane, we can construct a range tree in $O(n \log n)$ time and space, so that rectangle queries can be executed in $O(\log^2 n + k)$ time.
- The query time can be improved to $O(\log n + k)$ using the technique of *fractional cascading*. We won't discuss this, some deep constructions are involved.

ヘロト ヘロト ヘビト ヘビト

Geometric Data Structures Range searching Range Trees

Range searching with Range-trees

- Given a set S of n points in the plane, we can construct a range tree in $O(n \log n)$ time and space, so that rectangle queries can be executed in $O(\log^2 n + k)$ time.
- The query time can be improved to $O(\log n + k)$ using the technique of *fractional cascading*. We won't discuss this, some deep constructions are involved.
- For Audience: How can you construct range tree in $O(n \log n)$ time. $O(n \log^2 n)$ is easy.

Geometric Data Structures		
Range searching		
Kd-trees		

Kd Trees

Kd-trees for Range Searching Problem

There is another beast called Kd-trees.

We use a data structure called Kd-tree to solve the problem some-what efficiently in efficient space. What are Kd-trees?

Range searching

Kd-trees

2-dimensional Range Searching

Problem (Review: What are we doing?)

Given a set P of n points in the plane, report points inside a query rectangle Q whose sides are parallel to the axes.

Here, the points inside Q are 14, 12 and 17.

Kd-trees

For the given point set, this is how the tree looks like.

<ロト <回ト <注ト <注ト

Kd-trees for Range Searching Problem

What are Kd-trees?

- *Kd-trees* are basically *binary* trees where we divide data first on *x*-coordinates, then *y*-coordinates, then *z*-coordinates, etc. and then cycle.
- In 2D case, alternate levels of Kd-tree are sorted along *x*-axis and *y*-axis.

ヘロト ヘロト ヘビト ヘビト

Kd-trees: Some concepts

• The tree T is a perfectly height-balanced binary search tree with alternate layers of nodes spitting subsets of points in P using x- and y- coordinates, respectively as follows.

Kd-trees

Kd-trees: Some concepts

- The tree T is a perfectly height-balanced binary search tree with alternate layers of nodes spitting subsets of points in P using x- and y- coordinates, respectively as follows.
- The point r stored in the root vertex T splits the set S into two roughly equal sized sets L and R using the median x-coordinate xmedian(S) of points in S, so that all points in L (R) have coordinates less than or equal to (strictly greater than) xmedian(S).

Kd-trees

Kd-trees: Some concepts

- The tree T is a perfectly height-balanced binary search tree with alternate layers of nodes spitting subsets of points in P using x- and y- coordinates, respectively as follows.
- The point r stored in the root vertex T splits the set S into two roughly equal sized sets L and R using the median x-coordinate xmedian(S) of points in S, so that all points in L (R) have coordinates less than or equal to (strictly greater than) xmedian(S).
- The entire plane is called the region(r). Better to keep the extents of region(r) as well with r.

Range searching

Kd-trees

Kd-trees: Some Concepts

• The set L(R) is split into two roughly equal sized subsets LU and LD (RU and RD), using point u(v) that has the median y-coordinate in the set L(R), and including u in LU(RU).

Range searching

Kd-trees

Kd-trees: Some Concepts

- The set L(R) is split into two roughly equal sized subsets LU and LD (RU and RD), using point u(v) that has the median y-coordinate in the set L(R), and including u in LU(RU).
- The entire halfplane containing set L (R) is called the region(u) (region(v)).

Kd-trees

Answering rectangle queries using Kd-trees

• A query rectangle Q may partially overlap a region, say region(p), completely contain it, or completely avoids it.

Kd-trees

Answering rectangle queries using Kd-trees

- A query rectangle Q may partially overlap a region, say region(p), completely contain it, or completely avoids it.
- If Q contains an entire bounded region(p) then report all points in region(p).
- If Q partially intersects region(p) then descend into the children.
- Otherwise skip region(p).

Kd-trees

Time complexity of rectangle queries

The nodes of the Kd-tree we visit are (1) the internal nodes representing regions partially intersecting Q and (2) all the descendant nodes for regions fully inside Q.

• Reporting points within Q contributes to the output size k for the query.

- Reporting points within Q contributes to the output size k for the query.
- No leaf level region in T has more than 2 points.

A D > A P > A B > A B >

- Reporting points within Q contributes to the output size k for the query.
- No leaf level region in T has more than 2 points.
- So, the cost of inspecting points outside Q but within the intersection of leaf level regions of T can be charged to the internal nodes traversed in T, i.e. it will not be more.

- Reporting points within Q contributes to the output size k for the query.
- No leaf level region in T has more than 2 points.
- So, the cost of inspecting points outside Q but within the intersection of leaf level regions of T can be charged to the internal nodes traversed in T, i.e. it will not be more.
- This cost is borne for all leaf level regions intersected by Q. This also takes care of fully contained regions.

ヘロト ヘロト ヘビト ヘビト

Kd-trees

Time complexity of traversing the tree

Now we need to bound the number of internal nodes of T traversed for a given query Q corresponding to partial intersections.

Range searching

Kd-trees

Time complexity of traversing the tree

 It is sufficient to determine the upper bound on the number of (internal) nodes whose regions are intersected by a single vertical (horizontal) line. Why?

Range searching

Kd-trees

Time complexity of traversing the tree

- It is sufficient to determine the upper bound on the number of (internal) nodes whose regions are intersected by a single vertical (horizontal) line. Why?
- Because the internal nodes encountered in case of rectangle are subset of internal nodes encountered for four straight-line (two horizontal and two vertical) queries.

Time complexity of traversing the tree

• Any vertical line intersecting S can intersect either L or R but not both, but it can meet both RU and RD (LU and LD).

(a) < ((a) <

Time complexity of traversing the tree

- Any vertical line intersecting S can intersect either L or R but not both, but it can meet both RU and RD (LU and LD).
- Any horizontal line intersecting R can intersect either RU or RD but not both, but it can meet both children of RU (RD)

Time complexity of rectangle queries

 $\bullet\,$ Therefore, the time complexity T(n) for an $n\mbox{-vertex}$ Kd-tree obeys the recurrence relation

$$T(n) = 2 + 2T(\frac{n}{4}), \quad T(1) = 1$$

Time complexity of rectangle queries

 $\bullet\,$ Therefore, the time complexity T(n) for an $n\mbox{-vertex}$ Kd-tree obeys the recurrence relation

$$T(n) = 2 + 2T(\frac{n}{4}), \quad T(1) = 1$$

- The solution for T(n) is $O(\sqrt{n})$ (an exercise for audience!, direct substitution does not work!!).
- The total cost of reporting k points in Q is therefore $O(\sqrt{n}+k).$

Summary:Range searching with Kd-trees

Given a set S of n points in the plane, we can construct a Kd-tree in $O(n \log n)$ time and O(n) space, so that rectangle queries can be executed in $O(\sqrt{n} + k)$ time. Here, the number of points in the query rectangle is k.

A D > A P > A B > A B >

Range searching

Kd-trees

More general queries

General Queries: Points inside triangles, circles, ellipses, etc.

• Triangles can simulate other shapes with straight edges.

(a) < ((a) <

Range searching

Kd-trees

More general queries

General Queries: Points inside triangles, circles, ellipses, etc.

- Triangles can simulate other shapes with straight edges.
- Circle are different, cannot be simulated by triangles! (or any other straight edge figure!!).

Range searching

Kd-trees

More general queries

Kd-trees can be used for all of these, rectangle query, circle query and nearest neighbour!!

Interval Queries

Interval Queries

Interval Queries: Motivation

Motivation: Windowing Problem

Problem

Report all the objects (may be partial) inside a window.

We already dealt with points. Here the objects are line-segments.

Interval Queries

Interval Queries: Motivation

Motivation: Windowing Problem

Windowing problem is not a special case of rangequery. Even for orthogonal segments. Segments with endpoints outside the window can intersect it.

Geometric Data Structures Interval Queries Interval Queries: Motivation

Simple Algorithm

- Report line segments if both end-points inside the window, i.e. full line-segments.
- Report line segments intersecting the four boundaries, i.e., partial line segments.

イロト イロト イヨト イヨト

Interval Queries

Interval Queries: Motivation

Special Treatment: Windowing Problem

We solve the special case. We take the window edges as infinite lines for segments partially inside (we report extra).

Geometric Data Structures Interval Queries

Interval Queries: Motivation

Problem concerning intervals

Problem

Given a set of intervals I and a query point x, report all intervals in I intersecting x.

Solution: Obviously O(n), n = |I|, algorithm will work.

A D F A B F A B F A B F

Geometric Data Structures Interval Queries

Interval Queries: Motivation

Finding intervals containing a query point

Simpler queries ask for reporting all intervals intersecting the vertical line $X = x_{query}$. More difficult queries ask for reporting all intervals intersecting a vertical segment joining (x'_{query}, y) and (x'_{query}, y') .

Geometric Data Stru	ctures		
Interval Queries			
Interval Trees			

Interval Trees

Interval Queries

Interval Trees

Interval trees: What are these?

The set M has intervals intersecting the vertical line $X = x_{mid}$, where x_{mid} is the median of the x-coordinates of the 2n endpoints. The root node has intervals M sorted in two independent orders (i) by right end points (B-E-A), and (ii) left end points (A-E-B).

Interval Queries

Interval Trees

Interval tree: Computing and Space Requirements

The set L and R have at most n endpoints each.

So they have at most $\frac{n}{2}$ intervals each.

Clearly, the cost of (recursively) building the interval tree is $O(n \log n)$.

The space required is linear.

イロト イポト イヨト イヨト

Interval Queries

Interval Trees

Answering queries using an interval tree

For $x_{query} < x_{mid}$, we do not traverse subtree for subset R. For $x'_{query} > x_{mid}$, we do not traverse subtree for subset L. Clearly, the cost of reporting the k intervals is $O(\log n + k)$.

Geometric Data Structures Interval Queries

Segment Trees

Another solution using segment trees

There is yet another beast called *Segment Trees!*. Segment trees can also be used to solve the problem concerning intervals.

イロト イロト イヨト イヨト

Interval Queries

Segment Trees

Introducing the segment tree

For an interval which spans the entire range inv(v), we mark only internal node v in the segment tree, and not any descendant of v. We never mark any ancestor of a marked node with the same label

Interval Queries

Segment Trees

Representing intervals in the segment tree

At each level, at most two internal nodes are marked for any given interval.

Along a root to leaf path an interval is stored only once.

The space requirement is therefore $O(n \log n)$.

イロト イポト イヨト イ

Interval Queries

Segment Trees

Reporting intervals containing a given query point

• Search the tree for the given query point.

イロト イポト イヨト イヨト

Interval Queries

Segment Trees

Reporting intervals containing a given query point

- Search the tree for the given query point.
- Report against all intervals that are on the search path to the leaf.

イロト イポト イヨト イヨ

Interval Queries

Segment Trees

Reporting intervals containing a given query point

- Search the tree for the given query point.
- Report against all intervals that are on the search path to the leaf.
- If k intervals contain the query point then the time complexity is O(log n + k).

Geometric Data Structures	
Sweeping Technique	
Linear Sweep	

Line Sweep Technique

ヘロト ヘロト ヘヨト ヘヨト

Linear Sweep

Problem to Exemplify Line Sweep

Problem

Given a set S of n line segments in the plane, report all intersections between the segments.

Linear Sweep

Reporting segments intersections

Easy but not the best solution: Check all pairs in $O(n^2)$ time.

イロト イポト イヨト イヨト

Linear Sweep

Line Sweep: Some observations for Sweeping

• A vertical line just before any intersection meets intersecting segments in an empty, intersection free segment, i.e. they must be consecutive.

イロト イポト イヨト イヨト

Linear Sweep

Line Sweep: Some observations for Sweeping

- A vertical line just before any intersection meets intersecting segments in an empty, intersection free segment, i.e. they must be consecutive.
- Detect intersections by checking consecutive pairs of segments along a vertical line.

イロト イポト イヨト イヨ

Linear Sweep

Line Sweep: Some observations for Sweeping

- A vertical line just before any intersection meets intersecting segments in an empty, intersection free segment, i.e. they must be consecutive.
- Detect intersections by checking consecutive pairs of segments along a vertical line.
- This way, each intersection point can be detected. How?

イロト イポト イヨト イヨト

Linear Sweep

Line Sweep: Some observations for Sweeping

- A vertical line just before any intersection meets intersecting segments in an empty, intersection free segment, i.e. they must be consecutive.
- Detect intersections by checking consecutive pairs of segments along a vertical line.
- This way, each intersection point can be detected. How?
- We maintain the order at the sweep line, which only changes at event points.

Sweeping: Steps to be taken at each event

We use heap for event queue.

We use binary search trees (balanced) for segments in the sweep line.

Source (for image): http://research.engineering.wustl.edu/ pless/

Reporting segments intersections

• The use of a heap does nor require apriori sorting.

<ロ> (四) (四) (三) (三)

Reporting segments intersections

- The use of a heap does nor require apriori sorting.
- All we do is a heap building operation in linear time level by level and bottom-up.

イロト イポト イヨト イヨト

Reporting segments intersections

- The use of a heap does nor require apriori sorting.
- All we do is a heap building operation in linear time level by level and bottom-up.

•
$$1 \times \frac{n}{2} + 2 \times \frac{n}{4} + 4 \times \frac{n}{8} + \dots$$

イロト イポト イヨト イヨト

Linear Sweep

Sweeping steps: Endpoints and intersection points

<ロ> (四) (四) (三) (三)

Problem for Visibility: angular sweep

The problem is to determine edges visible from an interior point [6]. We can use a similar angular sweep method.

Visibility polygon computation

Final computed visibility region.

イロト 不得 とうき とうせい ほうぶ

Application-I

• Why do we need special data structures for Computational Geometry?

Application-I

- Why do we need special data structures for Computational Geometry?
- Because objects are more complex than set of arbitrary numbers.
- And yet, they have geometric structure and properties that can be exploited.

イロト イポト イモト イモト

Application-I: Visibility in plane/space

Any first-person-shooter game needs to solve visibility problem of computational geometry which is mostly done by Binary Space Partitions (BSP) [4, 5]. (Software: BSPview)

Application-I: Visibility in rough terrain

We might not have enclosed space, or even nice simple objects. (Software: BSPview)

Application-I: Visibility in a room

At every step, we need to compute visible walls, doors, ceiling and floor. (Software: BSPview)

イロト イポト イモト イモト
Application-I: Calculation of Binary Space Partitions

The data structure that is useful in this situation is known as *Binary Space/Planar Partitions*. Almost every 3D animation with moving camera makes use of it in rendering the scene.

A D > A P > A B > A B >

Application-II: Locating given objects is geometric subdivisions

Another problem, we might need to locate objects (the elephant) in distinct regions like trees, riverlet, fields, etc. (GPLed game: 0AD)

Application-II: Location of objects in subdivision

This problem is known as point location problem in its simplest special case.

Application-III: Finding objects in a window

Yet in another case, we need to find all objects in a given window that need to be drawn and manipulated. (GPLed game: 0AD)

イロト イポト イヨト イヨト

Application-III: Finding intersections of objects

This is classical collision detection. Intersection of parabolic trajectories with a 3D terrain. (GPLed game: TA-Spring)

・ロト ・聞 ト ・ ヨト ・ ヨ

Application-III: Problem of Collision Detection/Finding Intersections

This problem is known as collision detection. In the static case it is just the intersections computation problem.

Conclusion

Open Problems and Generalisations

- Generalizations of each of the problems in space and higher dimensions
- Counting points/objects inside different type of objects such as triangles, circles, ellipses, or, tetrahedrons, simplexes, ellipsoids in higher space and higher dimensions
- Good data structures for computing and storing visibility information in 3D

• We studied the concept of Kd-trees and Range trees.

- We studied the concept of Kd-trees and Range trees.
- Next we saw how we can answer queries about intervals using interval trees and segment trees.

- We studied the concept of Kd-trees and Range trees.
- Next we saw how we can answer queries about intervals using interval trees and segment trees.
- We looked into line-sweep technique.

- We studied the concept of Kd-trees and Range trees.
- Next we saw how we can answer queries about intervals using interval trees and segment trees.
- We looked into line-sweep technique.
- Now we are for the final concluding remarks.

You may read

- The classic book by Preparata and Shamos [7], and
- The introductory textbook by Marc de Berg et al. [2],
- The book on algorithms by Cormen et al. [1] contains some basic geometric problems and algorithms,
- For point location Edelsbrunner [3], though a little hard to understand, is good,
- And lots of lots of web resources.

Geometric Data Structures Conclusion

Thanks to Dr Sudep P Pal, IIT Kharagpur, for providing most of the material and pictures of the presentation.

References I

 Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
 Introduction to Algorithms.
 McGraw-Hill Higher Education, 2001.

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf.

Computational Geometry: Algorithms and Applications. Springer-Verlag, second edition, 2000.

Herbert Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, New York, 1987.

References II

- H. Fuchs, Z. M. Kedem, and B. Naylor.
 Predetermining visibility priority in 3-D scenes (preliminary report).
 13(3):175–181, August 1979.
- H. Fuchs, Z. M. Kedem, and B. F. Naylor.
 On visible surface generation by a priori tree structures. 14(3):124–133, July 1980.
- Subir K Ghosh.
 Visibility Algorithms in the Plane.
 Cambridge University Press, Cambridge, UK, 2007.
- F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, 1985.

イロト 人間 と 人 ヨ と 人 ヨ と

Geometric Data Structures Conclusion

Thank You

shreesh@rkmvu.ac.in sarvottamananda@gmail.com

æ

・ロト ・ 日 ト ・ 日 ト ・ 日 ト