¢acility Location Problemg

Pinaki Mitra
Dept. of CSE
IIT Guwahati



Heron’s Problem

« HIGHWAY FACILITY LOCATION
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lllustration of the Proof of Heron’s
Theorem

d(p.r) +d(q,r) =d(p’,0)

d(p,r’) +d(q,r’) =d(p’,r’) + d(q,r’) >= d(p’,q)



MINIMAX FACILITY LOCATION

Given n points in the plane representing customers
(plants, schools, towns etc..) it is desired to determine
the location X (another point in the plane) where a
facility should be located so as to minimize the
distance from X to its furthest customer.

The problem has an elegant and succinct geometrical
interpretation: “Find the smallest circle that encloses a
given set of n points.”

The center of the circle is

Precisely the location of X The smallest

circle enclosing a
set of points




The minimum enclosing circle can be computed from
the Furthest Neighbor Voronoi Diagram. [Shamos]

The correctness of the above algorithm was
established by [Bhattacharya & Toussaint]. Their
argument is based on the following property of the
minimum enclosing circle :

The minimum enclosing circle of a set S of n points is
either determined by the diameter of the point set S or
by three points on the convex hull of S, where those
three points form an acute angled triangle.



Furthest Neighbor Voronoi Diagram can be
computed from the projection of the upper hull of the
point set lifted on the paraboloid z = X2 + )~.




But the computation of Furthest Neighbor Voronoi
Diagram is lower bounded by the computation of the
convex hull of n points i.e., Q (nlogn).

But this lower bound doesn’t hold for the minimum
enclosing circle.

In fact we can compute the minimum enclosing circle
of a set of n points Iin 8(n) time by solving three
variable Convex Program. [Meggido]

The result holds for any fixed dimensional point set.



Here (x,,y,), (X5, V»), ----, (X,,¥,) are the set of points for which we have to
compute the minimum enclosing circle.

Let (x,y) be the center of the minimum enclosing circle and let r be its radius.
Then we have the minimum enclosing circle problem formulated as the
following optimization problem:

Minimize r?
Subject to: (x-x)2 + (y-y)2<rri=1,2,...,n

If we substitute z = X* + y2 — 2 then we have the following convex
programming formulation of the problem:

Minimize X2 + y2 — z
Subject to: -2xx.-2yy. + z+ (x?+ y?) <0 i=1,2,...,n

Thus we have to minimize a quadratic function over a set of linear
constraints involving 3 variables.



Fermat-Weber Problem

Problem Definition:
For a given set of m points x,, x,, ..., X, with each x, [J R?find a
point y from where the sum of all Euclidean distances to the x.'s
IS the minimum.

This problem is also known as Geometric 1-Median problem :

n

arg min
yOR Z

xl.—yH

The special case when n = 3 and d = 2 arises In the
construction of Minimal Steiner Trees and was originally
posed as problem by Torricelli.



a
bi;: Cp\

For 3 coplanar points a, b, c if each angle of the triangle abc is less tan 120° the
Fermat Point fis a point inside the triangle which subtends 120° an angle to all
three pairs of points. Otherwise if any angle of the triangle abc is greater than
then Fermat Point is the point making that angle.

For 4 coplanar points if a point is inside the triangle formed by the other three
points then geometric 1-median is that point. Otherwise all 4 points form a
convex quadrilateral and the geometric 1-median is the intersection point of
both the diagonals and also known as Radon Point.




If we restrict d =1, i.e., for the 1-dimensional case then the geometric 1-
median coincides with the median.

Again if we consider the problem in L, metric with d = 2, i.e., in 2-dimension

we can combine the optimal solutions of two 1 dimensional problems to
obtain the optimal solution of the original problem.

The method extends for any value of din L, metric ,i.e., we can decompose

the problem in d one dimensional problems and combine their optimal
solution to obtain the optimal solution of the original problem.

In L, metric Weiszfeld’s algorithm iteratively computes the geometric 1-

median problem : ”5 X
T= ’%; T Y

yi—l'} 7 1
T=F Y, T i




K-Median

Given a set S of n points in the plane we have to locate a set F of k facilities
that partitions the set S in k partitions N(f) i=1,2, ..., k so that for any site s,

O N(f) [neighborhood of f;] being served by the facility f, the following sum
IS minimized:

i Zdist(fi,sj)

=1 stN(fl-)

where

s =[N

i=1

and
N(f)NN(f)=@l<i<j<k



In k-median problem the elements for the set F can be any k
sites in R? in the unrestricted case. Sometimes we restrict the
k-median problem such that FO S, I.e., input point sites. Both
of these problems are NP-Hard. [Meggido & Supowit]

So our goal should be the design of efficient approximation
algorithms for these problems. Here we will restrict our attention
to the restricted version of the problem.

Restricted version of our facility location can still be classified
Into two subcategories:

(a) Uncapacitated k-median problem

(b) Capacitated k-median problem



A common assumption used when dealing with location problems is that
facilities are uncapacitated and can thus service any number of demand
destinations. But the assumption may be unrealistic in many applications
and thus in capacitated facility location an upper bound is provided on the
number of demand destinations serviced by each facility.

Now we can formulate these problems using ILP as follows:

Minimize Y D dist(s;,s))x;

=1 =1

Subjectto: =z



y; U101}
x, 001}  i=12,..,n  j=12,..n

The indicator variable y.denotes if the site s; is selected as
the facility or not.

The indicator variable x; denotes if the facility at the site s,
serves the customer at site s.

Since ILP is NP-Complete the usual technique is to relax the

Integrality constraint , i.e., replace the above two constraints
by:

0<y <1 i=12,..n

O<sx, <1 i=12,..,n j=12..n



Then we solve the LP-relaxation of the ILP. After that the
fractional solution is cleverly rounded maintaining the feasibility
and some bound is established w.r.t 2%, < 2%, ;

For rectilinear 1-median problem Q(nlogn) lower bound was
established by [Bajaj].

As far as upper bounds are concerned there are O(n'°log*n)
time algorithm for arbitrary weighted points and O(nlog*n) time
algorithm for equally weighted point set was exhibited by
[EIGindy & Kell]

Thus even in L, metric there are big gaps between these upper
and lower bounds.

All these pose several new directions of future research.



Line Facility

In many practical applications we may be interested in locating
a line facility rather than locating a point facility.

For example we may have to construct a road in some
residential area so that it is convenient to most of the residents.
Then this road design is the same as locating a line facility
among a set of sites for residents.

There can be many variations of these problems in various
metric. The L, approximation of this problem, i.e., where we

have to minimize the sum of the squares of the perpendicular
distances is the well known Regression Line Problem.



Given a set of data points (x;, ¥,), (X5 Vs)s ---5 (X, ¥,) We have to find the
equation of the straight line y = ax + b that minimizes the L, error, i.e.,

Minimize Z [y, - (ax, +b)] = E
i=1

Here the variables are in fact a and b. So we have two unknowns and we
require at least two equations to solve. They are obtained from the minima
criterion after taking partial derivatives w.r.t. a and b respectively:

OE OE
= (),_ =()
da 0b
The result can be extended for any dimensional data. For example in d-
dimensions we have to find the Regression Hyper-plane a,x, + ax, + ... +

a,x, = b. Thus we have to

n

Z [b- i ajxj.]2 )

Minimize =1



Thus we have d - unknowns a,, a,, ..., a,. They are solved from the following
system of equations:

a_E — O, a_E — O’ aE =0
Oa, Oa, "Oa, J

For L, approximation of the problem we have to

Minimize Z'b Z“' E

This absolute value function is not a linear function. But we can easily
convert it to a standard LP problem as follows [Chvatall:

Minimize Ze

Subjectto: b — za X =e, 1 =1.,2.....n

—b+Za x. <e, 1 =1.2,....n



For L_ approximation of the problem we have to

d
Minimize ~ max!b=) a;x!
l ]:

This can be directly formulated into LP as follows:

Minimize <

d
Subject to: z +Zajx; ) 1 =1.,2.....n
J=
: ' 1 =1,2 n
z— a.x' =—>b = LoLseees
jZ J J

The problem of L, and L_ approximation problem was first posed

By Fourier. Subsequently many good algorithms for computing L,
and L_ approximation were proposed by [Bloomfield & Steiger].



Similar type of problems for line facility concerns:

1) Locating a line facility that minimizes the maximum distance
from a set of sites.

) Locating a line facility that minimizes the sum of the distances
from a set of sites.

There are several possible extensions of these problems.






